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Preface

In this diploma thesis we want to have a practical view on the several approaches to
get minimal or intuitionistic proofs from classical proofs satisfying some constraints.
Those theorems are usually referred to as “Glivenko style” due to Glivenko’s theorem,
which states that if P→Q is a classical theorem, then ¬¬P→¬¬Q is an intuitionistic
theorem, but restricted to propositional logic.

Several theorems, like Barr’s theorem, are going in this direction and are already
widely used in constructive mathematics. On the other hand, Orevkov’s theorem
with its proofs appears to be widely unknown, though it seems to be a more general
theory.

We will concentrate on one case of Orevkov’s “complete Glivenko classes”, which are
classes of sequents in which classical and intuitionistic derivability are equivalent,
sketch Orevkov’s and Nadathur’s proof for this complete Glivenko class, and give an
own proof of its sufficiency using only elementary transformations of proofs given in
natural deduction.

We will also give an example from actual constructive mathematics, a constructive
version of Heitmann’s theorem for rings, by Coquand and Lombardi. Even though
this example has already been researched, it shows what type of problems Orevkov’s
theorem could be applied to.

One should keep in mind that this might very well be the start of some useful theory,
not the end.

At this point many thanks go to Prof. Dr. Helmut Schwichtenberg for supervising
this diploma thesis. Furthermore I am indebted to Matthias Benkard, Daniel El-Baz,
Nicolai Kraus, Christian Sattler and Matvey Soloviev for reading over this thesis and
assisting me with improving the exposition.
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1 Preliminary Definitions

We deal with different approaches for the same or similar things. Therefore we aim
to point out the similarities as well as the differences between them. We will try to
unify the concepts and notations of all the references we give. This is not always as
simple as one would expect, especially since “portability” does not seem to be a
concept that has reached the mathematical world yet.

This list of definitions has the purpose of clarifying what we mean by the several
concepts and notations we will use. However, it does not have the purpose of
explaining them in detail in a didactic way, as this is outside the scope of this thesis.
For more detailed discussions, the references should be considered.

1.1 The Language

We use the usual notation of first order logic. We have the logical symbols
{∀, ∃, ∧, ∨,→}, infinitely many variable symbols {x0, x1, x2, x3, . . .}, for every n ∈N0

infinitely many n-ary function symbols {fn0 , fn1 , fn2 , fn3 , . . .} and infinitely many n-ary
relation symbols {Rn0 ,Rn1 ,Rn2 ,Rn3 , . . .}. Every variable is a term, and if t1, . . . , tn are
terms, then fni t1 . . . tn is a term for suitable i. If t1, . . . , tn are terms, then Rni t1 . . . tn is
an atomic formula (or atom) for suitable i. As usual, we use other symbols than Rni
and fni and xi to denote relations, functions and variables. Their arity should always
be clear. Every atomic formula is a formula, and if A and B are formulae and x is a
variable, then A→B, A∧B, A∨B, ∀xA and ∃xA are formulae.

In some of the systems, we have an additional connective ¬, such that ¬A is also a
formula if A is a formula. But mostly, we define a special nullary relation ⊥, the
falsum (with the intuition that this is a formula which is always wrong) and define
¬A by A→⊥. In the definitions below, we therefore include the case for ¬.
Furthermore, some of the systems have an additional nullary relation symbol >, the
verum, with the intuition that this is a formula that is always true. Some systems, for
example in (5), do not regard ⊥ or > as atomic formulae. We will however always do
this, as it does not make a difference anywhere.

The function var maps terms to the set of the variables they contain, which can be
recursively defined by var(xi) = {xi}, var(fni t1 . . . tn) =

⋃
j var(tj). The function FV

maps formulae to the set of their free variables, which can be recursively defined by
FV(Rni t1 . . . tn) =

⋃
j var(tj), FV(A→B) = FV(A∧B) = FV(A∨B) = FV(A)∪ FV(B),

FV(∀xA) = FV(∃xA) = FV(A)\{x}, FV(¬A) = FV(A).

The substitution A[x1 := t1, . . . , xn := tn] = A[(xi)1≤i≤n := (ti)1≤i≤n] for terms and
formulae A is recursively defined by

• xj[(xi)1≤i≤n := (ti)1≤i≤n] = tj for 1 ≤ j ≤ n
• y[(xi)1≤i≤n := (ti)1≤i≤n] = y for variables y not occurring in (xi)1≤i≤n
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• (fni t1 . . . tn)[(xi)1≤i≤n := (ti)1≤i≤n] = fni (t1[(xi)1≤i≤n :=
(ti)1≤i≤n]) . . . (tn[(xi)1≤i≤n := (ti)1≤i≤n])

• (Rni t1 . . . tn)[(xi)1≤i≤n := (ti)1≤i≤n] = Rni (t1[(xi)1≤i≤n :=
(ti)1≤i≤n]) . . . (tn[(xi)1≤i≤n := (ti)1≤i≤n])

• (¬A)[(xi)1≤i≤n := (ti)1≤i≤n] := ¬(A[(xi)1≤i≤n := (ti)1≤i≤n])

• (A ◦ B)[(xi)1≤i≤n := (ti)1≤i≤n] = A[(xi)1≤i≤n := (ti)1≤i≤n] ◦ B[(xi)1≤i≤n :=
(ti)1≤i≤n] for ◦ ∈ {∧, ∨,→}

• (QxA)[(xi)1≤i≤n := (ti)1≤i≤n] = Q(A[(xi)1≤i≤n := (ui)1≤i≤n] for Q ∈ {∀, ∃}

where ui =

{
ti for x 6= xi

x otherwise

where we assume that the ti do not contain variables that are bound in a context
where the xi is unbound, saying ti is free for xi, and if so, we rename these bound
variables appropriately. If we want to express that a variable may occur freely in
multiple elements of a theory Γ , we call that variable a parameter, and if we want to
stress that it has a special meaning in the theory (and thus usually not bind it),
constant of a theory Γ . Usually, parameters will be disjoint from all variables that are
bound in proofs.

1.2 Subformulae

Definition We need the concept of subformulae SF, positive subformulae PSF and
negative subformulae NSF of a formula, which we define recursively by

• SF(⊥) = PSF(⊥) = NSF(⊥) = {⊥}.

• SF(Rni t1 . . . tn) = PSF(Rni t1 . . . tn) = {Rni t1 . . . tn}, NSF(Rni t1 . . . tn) = ∅.

• f(A ◦ B) = f(A)∪ f(B)∪ {A ◦ B} for f ∈ {SF, PSF},
NSF(A ◦ B) = NSF(A)∪NSF(B), for ◦ ∈ {∧, ∨}.

• SF(¬A) = {¬A}∪ SF(A), PSF(¬A) = {¬A}∪NSF(A), NSF(¬A) = PSF(A) if we
have ¬ as own connective (otherwise like A→⊥).

• SF(A→B) = {A→B}∪ SF(A)∪ SF(B), PSF(A→B) = {A→B}∪NSF(A)∪ PSF(B),
NSF(A→B) = PSF(A)∪NSF(B).

• SF(QxA) = {QxA}∪ ⋃
t term

SF(A[x := t]), NSF(QxA) =
⋃
t term

NSF(A[x := t]),

PSF(QxA) = {QxA}∪ ⋃
t term

PSF(A[x := t]), for Q ∈ {∀, ∃}.

1.3 Height, Length

The height of a tree is the length of its longest branch, the length of a tree is the
number of its nodes (with the intuition that this is about the length of a string
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representation of this tree). As formulae are trees, the following definitions can be
given.

len(A) =

 1 for atomic A
1+ len(B) + len(C) for A = B ◦C with ◦ ∈ {→, ∨, ∧}

1+ len(B) for A = QxB with Q ∈ {∀, ∃}

hgt(A) =

 1 for atomic A
1+ max(hgt(B), hgt(C)) for A = B ◦C with ◦ ∈ {→, ∨, ∧}

1+ hgt(B) for A = QxB with Q ∈ {∀, ∃}

Similarly for proof trees which will be defined in Section 1.6

len(t) =


1 for variables t

1+ len(q) for t = ∨+q, t = λxq, t = ∃+uq, t = q∀xAu
1+ len(q) + len(r) for t = qA→BrA, t = 〈q, r〉 , t = q(r)

1+ len(p) + len(q) + len(r) for t = p(q, r)

hgt(t) =
1 for variables t

1+ hgt(q) for t = ∨+q, t = λxq, t = ∃+uq, t = q∀xAu
1+ max(hgt(q), hgt(r)) for t = qA→BrA, t = 〈q, r〉 , t = q(r)

1+ max(hgt(p), hgt(q), hgt(r)) for t = p(q, r)

1.4 Entailment

We will use the `-character to denote several different entailment relations. For
example, `m, `i, `tc and `ec shall denote minimal, intuitionistic, traditional classical
and extended classical derivability. These concepts are well-known and have several
equivalent definitions. We will give one definition in Section 1.6.

` without any index shall denote derivability that is not clearly specified, for
example when the context is applicable to all of `m, `i, `ec and `tc.

1.5 Sequent Calculi

We will have to deal with several sequent calculi. There are a few things they all have
in common.

A sequent is a pair (Γ ;∆) of finite multisets Γ and ∆ of formulae, where the first
component Γ is called antecedent and the second component ∆ is called succedent. If
the succedent is a singleton, the sequent is called singular, but notice that this is not
the same as saying that it only contains one formula, (Γ ; {A,A}) is not singular, while
(Γ ; {A}) is. While there are several notations for separators of antecedent and
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succedent, we will use the⇒ character. Other notations that can be found in some of
the references use ¬→, ⊥→, ` and→, exchanging→ and ⊃ in formulae. Thus,
sequents are usually denoted by Γ ⇒ ∆.

If we talk about positivity or negativity of formulae regarding a sequent Γ ⇒ ∆, we
shall consider every formula in Γ as negative and every formula in ∆ as positive,
with the appropriate consequences for their subformulae. Thus, we consider⇒
similar to an implication.

A common (informal) intuition is that the antecedent is interpreted conjunctively,
while the succedent is interpreted disjunctively.

The multisets are usually denoted by capital Greek letters which differ from capital
Latin letters, mostly Γ and ∆; formulae are considered as singletons; a comma is used
as union operator.

To denote that a sequent was derived by a special calculus, we write ` Γ ⇒ ∆, where
` may be replaced by something more specific. We usually give it an index that
points out the calculus it was derived from, but we may leave that index out if it is
clear from the context, or if we give properties that are applicable to multiple
entailment relations.

The rules are given in patterns of the form

M1 . . .Mn

N
a

where a denotes an identifier of the rule and may be left out as well, M1, . . . , Mn are
sequents that have already been derived, and N is the sequent that can be derived
from them. Rules with n = 0, that is, rules of the form

N
a

will be called (logical) axioms. N will be called the conclusion of a rule, the Mi and
additional constraints for that rule will be called the premises. The Mi will be called
the sequent premises.

We will sometimes be sloppy and write additional premises for a rule to apply next
to the Mi when there is no danger of confusion, for example

A atomic
A, Γ ⇒ ∆,A

Usually, the Mi are patterns of the form Γ ,A1, . . . ,An ⇒ ∆,B1, . . . ,Bm or similar,
where the Γ and ∆ denote parts that do not influence the behavior of the given rule
(except for variable conditions they must satisfy), while the explicitly given formulae
A1, . . . ,An,B1, . . . ,Bm are relevant. These parts that mostly do not influence the
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behavior are called the context of the rule, the explicitly stated formulae are called
differently throughout different calculi, as there might be a finer distinction between
them, in general we will therefore refer to them as formulae outside the context or
explicit formulae of that rule. We may add `-characters to the patterns.

If we want to make statements about the height of the proofs of sequents, we may
add a superscript to the entailment relation, telling about the height. `n Γ ⇒ ∆ shall
mean that Γ ⇒ ∆ is derivable in a proof of height ≤ n. Therefore, `n Γ ⇒ ∆ implies
`m Γ ⇒ ∆ for all m > n, and for axiomatic rules we have

`0 Γ ⇒ ∆

for rules with one premise we have

`n Γ ⇒ ∆

`n+1 Γ ′ ⇒ ∆ ′

and for rules with two premises we have

`m Γ ′ ⇒ ∆ ′ `n Γ ′′ ⇒ ∆ ′′

`1+max(m,n) Γ ⇒ ∆

1.6 The Calculus of Natural Deduction

The only calculus we will use which is usually not denoted as a sequent calculus is
the calculus of natural deduction, as described in (11) (however, of course, it can as well
be formulated as a sequent calculus, and its main differences to the other sequent
calculi is that it mainly operates on the succedent, and formulae can also be
decomposed). It has a notation of proofs as trees and a notation of proofs as lambda
terms. As we will use both, the following table gives both notations.

u : A uA

[u : A]

|M

B →+
A→B

(λuAMB)A→B
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|M

A→B |N

A →−
B

(MA→BNA)B

|M

A x 6∈ FV(M\{A}) ∀+∀xA
(λxMA)∀xA

|M

∀xA r ∀−
A[x := r]

(M∀xAr)A[x:=r]

|M

Ai i ∈ {0, 1}
∨+

A0 ∨A1

(v+,i,A1−i
MAi)A0∨A1

|M

A∨B

[u : A]

|N

C

[v : B]

|P

C ∨−
C

(MA∨B(uA.NC)(vB.PC))C

|M

A

|N

B ∧+
A∧B

〈
MA,NB

〉A∧B

|M

A1 ∧A2

[u : A1][v : A2]

|N

B
∧−

B

(MA1∧A2(uA1 , vA2 .NB))B

t

|M

A[x := t] ∃+∃xA
(∃+,xtM

A[x:=t])∃xA

|M

∃xA

[u : A]

|N

B “var cond” ∃−
B

(M∃xA(uA, x.NB))B
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The left premises of→−, ∨− and ∃− are called major premises of the applied rule, the
right premises are called minor premises. Notice that ∀+ and ∃− have variable
conditions; “var cond” of ∃− means that x must not occur freely in B, and not freely
in any free assumption of N except A.

Definition We define the function FA of free assumption variables over proofs by

• FA(uA) := {u}

• FA((λuAMB)A→B) := FA(M)\{u}

• FA((MA→BNA)B) := FA(M)∪ FA(N)

• FA((λxMA)∀xA) := FA(M)

• FA((M∀xAr)A[x:=r]) := FA(M)

• FA((v+,i,A1−i
MAi)A0∨A1) := FA(M)

• FA((MA∨B(uA.NC)(vB.PC))C) := FA(M)∪ (FA(N)\{u})∪ (FA(P)\{v})

• FA(
〈
MA,NB

〉A∧B
) := FA(M)∪ FA(N)

• FA((MA1∧A2(uA1 , vA2 .NB))B) := FA(M)∪ (FA(N)\{u, v})

• FA((∃+,xtM
A[x:=t])∃xA) := FA(M)

• FA((M∃xA(uA, x.NB))B) := FA(M)∪ (FA(N)\{u})

Definition We say that A is derivable in minimal logic from a set or multiset of
formulae Γ , writing Γ`mA, if there is a proof in natural deduction with end formula
A and which has only free assumptions that are also in Γ . We say it is derivable in
intuitionistic logic or intuitionistically derivable, writing Γ`iA, if EFQ∪ Γ`mA, where
EFQ := {∀~x.⊥→P~x|P relation symbol}. We say it is derivable in (traditional) classical logic
or (traditional-) classically derivable, writing Γ`tcA, if STAB∪ Γ`mA, where
STAB := {∀~x.¬¬A→A|A formula,~x ⊇ FV(A)}. We say it is derivable in extended classical
logic or extended classically derivable writing Γ`ecA, if ASTAB∪ Γ`mA, where
ASTAB := {∀~x.¬¬P~x→P~x|P relation symbol}.

Furthermore, we write Γ ` ∆ to denote that Γ ` A for all A ∈ ∆, where
`∈ {`m,`i,`tc,`ec}.

It is known that EFQ`m⊥→A for all formulae A, which is why we only put ⊥→A
for atomic A into EFQ. Unfortunately, the same cannot be done with STAB in
general, which is why we distinguish traditional and extended classical derivability.

Extended classical logic can be seen as another view on classical logic. In the historic
context, classical logic is usually defined according to our definition of traditional
classical logic. Therefore we will have a closer look at extended classical logic in the
part based on our own work in (10), in Section 4.
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Definition By the sequent seq(tA) of a proof tA we shall mean the pair
{B|uB ∈ FA(t),u some variable name}⇒ A, denoted as a sequent. Trivially, every
proof proves its sequent considered as the appropriate entailment.

We extend the concepts of positivity and negativity of formula occurrences to
sequents of proofs in the obvious way with⇒ being considered as implication, and
all premises of the sequent being considered negative, and the conclusion being
considered positive.

2 Barr’s Theorem

We first have a close look at Barr’s theorem, which gives one classification of theories
for which classical derivability implies intuitionistic derivability, namely the
geometric theories.

Definition A formula is called a geometric formula, if it does not contain→ and ∀. A
formula is called a geometric implication, if it is of the form ∀~x(A→B) where A and B
are geometric formulae. A theory Γ is called a geometric theory, if it only contains
geometric implications.

Theorem 2.1 (Barr’s theorem). Let A be a geometric implication, and Γ be a geometric
theory. Then Γ`tcA implies Γ`iA.

A lemma which is used in (5) and stated in (8) is

Lemma 2.2. Every geometric theory is intuitionistically equivalent to a theory where all the
axioms have the form

∀~x.P0→∃~y.P1 ∨ . . .∨ Pn

where the Pi are conjunctions of atomic formulae.

We may additionally require that ~y is non-empty, since we know that (∃yA)↔ A for
y 6∈ FV(A).

2.1 Palmgren’s Proof

We will look at a slight modification of the proof given in (8), which uses the
Gödel-Gentzen negative translation and the Dragalin-Friedman translation. We will
generalize the Gödel-Gentzen negative translation, avoiding the use of the
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Dragalin-Friedman translation. However, we still need ex falso quodlibet, since our
generalization of the Gödel-Gentzen negative translation cannot embed classical
logic into minimal logic, but only into intuitionistic logic. For the sake of
completeness, we will give a definition of the Dragalin-Friedman translation,
although we will not use it.

Definition The Dragalin-Friedman Translation for a formula is recursively defined as:

• AC = A∨C for atomic A

• (A ◦ B)C = AC ◦ BC for ◦ ∈ {→, ∨, ∧}

• (QxA)C = QxAC for Q ∈ {∀, ∃}

2.1.1 The continuation translation

Palmgren uses the Gödel-Gentzen negative translation which gives an embedding of
classical logic into minimal logic. We will, however, use a generalization which needs
intuitionistic logic.

Definition The continuation translation ·A for a formula A is recursively defined as:

• ⊥A = A

• PA = (P→A)→A for P atomic, P 6= ⊥
• (B∨C)A = ((BA→A) ∧ (CA→A))→A
• (∃xB)A = (∀x.BA→A)→A
• (B ◦C)A = BA ◦CA for ◦ ∈ {∧,→}

• (∀xB)A = ∀xBA

This is a generalization of the Gödel-Gentzen negative translation:

Definition The Gödel-Gentzen negative translation Ag for formulae A can be defined
by Ag := A⊥.

As usual, we set ΓA := {BA|B ∈ Γ }. Trivially, BA can be calculated from B by an
algorithm in linear time relative to len(B).

Lemma 2.3. Let A not contain free variables that occur bound in C, and C not contain
implications or universal quantifiers. Then CA ↔ ((C→A)→A) is derivable in intuitionistic
logic. The proof tree t can be generated by an algorithm in linear time relative to len(C), and
there is an m such that len(t) ≤ m · len(C) for all C.
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Proof By structural induction. Denote by M(C)CA→(C→A)→A and
N(C)((C→A)→A)→CA the generated proofs. We will use this notation for recursion.

• M(⊥) = λuAλv⊥→Au, N(⊥) = λu(⊥→A)→A .uEfqA.
• For atomic C 6= ⊥: M(C) = N(C) = λu(C→A)→Au.
• M(∃xC) = λ

w(∀x .CA→A)→Aλv(∃xC)→A .wλxλyCA
.M(C)yλuC .v(∃+,xu),

N(∃xC) = λy(∃xC→A)→Aλu∀x .C→A .yλw∃xC .w(vC.uxv).

• M(B∨D) = λ
x(B∨D)A

λv(B∨D)→A .
x
〈
λ
wBA

.M(B)wλuB .v(∨+,r,Du), λ
wDA

.M(D)wλuD .v(∨+,l,Bu)
〉
,

N(B∨D) = λx((B∨D)→A)→Aλu(B→A)∧(D→A) .
xλwB∨D .w(vB1 .(u(sB→A, tD→A.s))v1, vD2 .(u(sB→A, tD→A.t))v2).

• M(B∧D) = λ
xBA∧DA

λw(B∧D)→A .
(x(sBA , tDA .M(D)t))λvD .(x(sBA , tDA .M(B)s))λuB .w 〈u, v〉,

N(B∧D) = λw((B∧D)→A)→A .〈
N(B)λvB→A .wλuB∧D .v(u(sB, tD.s)),N(D)λvD→A .wλuB∧D .v(u(sB, tD.t))

〉
.

Trivially the resulting algorithm is linear relative to len(C). In every case, the size of
the additional tree nodes is bounded, hence, take as m the maximum number of
additional tree nodes in a step.

Remark Only for the case ⊥ we need intuitionism, which we do not need for the
Gödel-Gentzen negative translation in this special case.

Lemma 2.4. The following formulae are derivable in minimal logic for every A, B and C.
The length of the proof trees and the time consumed to produce them does not depend on the
formulae A, B and C.

1. (((A→B)→B)→B)→(A→B)

2. (A→B→C)↔ ((A∧B)→C)

3. A→((A→C)→C)

4. (((A→C)→C)→A)→(((B→C)→C)→B)→(((A∧B)→C)→C)→(A∧B)

5. (((B→C)→C)→B)→(((A→B)→C)→C)→A→B
6. ∀x.(((A→C)→C)→A)→(((∀xA)→C)→C)→A
7. (B→C)→((B→A)→A)→(C→A)→A

Proof

((A→B)→B)→B
[u : A→B] [x : A]

B u
(A→B)→B

B x
A→B
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A∧B

A→B→C [u : A]

B→C [v : B]

C u, v
C

(A∧B)→C [x : A] [y : B]

A∧B

C y
B→C x

A→B→C
[u : A→C] A

C u
(A→C)→C

((A→C)→C)→A
((A∧B)→C)→C

[x : A→C]

[y : A∧B] [s : A]

A

C y
(A∧B)→C

C x
(A→C)→C

A

...
B

A∧B

((B→C)→C)→B
((A→B)→C)→C

[x : B→C]

[y : A→B] [w : A]

B

C y
(A→B)→C

C x
(B→C)→C

B w
A→B

((A→C)→C)→A
((∀xA)→C)→C

[v : A→C]

[u : ∀xA]

A

C u
(∀xA)→C

C v
(A→C)→C

A
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(B→A)→A
[w : C→A]

B→C [x : B]

C

A x
B→A

A w
(C→A)→A

Lemma 2.5. Let A not contain free variables that occur bound in B. Then (¬¬B→B)A is
derivable in intuitionistic logic. The algorithm generating that proof is linear relative to
len(B), the length of the generated proof tree depends linearly on len(B).

Proof By structural induction. For B = ⊥, we have
(¬¬⊥→⊥)A = (((A→A)→A)→A) which is derivable by λu(A→A)→AuλvAv. For all
other atomic B, we have (¬¬B→B)A = ((((B→A)→A)→A)→A)→((B→A)→A) which
follows by Lemma 2.4/1. For B = ∃xC we have
(¬¬B→B)A = ((((∀x.C→A)→A)→A)→A)→(∀x.C→A)→A which also follows by
Lemma 2.4/1, same for B = C∨D,
(¬¬B→B)A = (((((C→A) ∧ (D→A))→A)→A)→A)→((C→A) ∧ (D→A))→A. For
B = C∧D we may assume (¬¬C→C)A = ((CA→A)→A)→CA and
(¬¬D→D)A = ((DA→A)→A)→DA by induction and apply Lemma 2.4/4, similarly
for B = ∀xC, (¬¬C→C)A with Lemma 2.4/6. For B = C→D we may assume
(¬¬D→D)A and apply Lemma 2.4/5.

As we are doing recursion over all connectives, the algorithm to prove this takes at
most len(B) steps.

Theorem 2.6. Let A be a formula not containing free variables that occur bound in Γ ,B.
Then there is an algorithm transforming a classical proof t of Γ`tcB into an intuitionistic
proof tm of ΓA`iBA. Let Q be the longest formula occurring in t. Then the algorithm takes
linear time relative to len(t) · len(Q), and len(tm) depends linearly on len(t) · len(Q).

Proof Denote by E(r) the converted term r. We give a recursive algorithm for E:

• E(uB) = BA if B is not a stability axiom, and otherwise like in Lemma 2.5

• E((λxBMC)B→C) = (λ
xBA

E(M)CA)BA→CA=(B→C)A

• E(
〈
MB,NC

〉B∧C
) =

〈
E(M)BA ,E(N)CA

〉BA∧CA=(B∧C)A

• E((λxMB)∀xB) = (λxE(M)BA)∀xBA=(∀xB)A

• E((MB→CNB)C) = (E(M)(B→C)A=BA→CAE(N)BA)CA

• E((MB∧C(uB, vC.ND))D) = (E(M)(B∧C)A=BA∧CA(uBA , vCA .E(N)DA))DA

• E((∨+,r,CM
B)B∨C) = (λ

uBA→AλvCA→AuE(M)BA)(B∨C)A , similarly for ∨+,l
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• E((M∀xBr)B[x:=r]) = (E(M)(∀xB)A=∀xBAr)BA[x:=r], this is allowed because
A[x := r] = A, since x occurs in Γ ,B.

• E((MB∨C(uB.ND,uC.PD))D) = E(u¬¬D→D)λ
wDA→A(

E(M)((BA→A)∧(CA→A))→A 〈λ
uBA

.w(u.E(N)DA), λ
vCA

.w(v.E(P)DA)
〉
)

• E(M∃xB(uB.NC)) = E(u¬¬C→C)λ
wCA→A .E(M)(∀x.BA→A)→AλxλuBA

.w(u.E(N)CA)
where the variable condition for the ∀+ is satisfied since otherwise there would
have to be a free assumption other than u in N which contains x freely and
then M∃xB(uB.NC) would not be valid anymore

In every step, the generated tree consists of the recursively calculated subtrees
expanded by a constant number of tree nodes or a constant number of applications
of Lemma 2.5. From this follows the linearity.

Lemma 2.7. Γ`iΓA for geometric theories Γ and A not containing variables occurring in Γ .
Generating a proof of this takes linear time relative to

∑
A∈Γ len(A).

Proof Every formula of Γ has the form ∀~x.B→C where B and C are geometric
formulae. Using Lemma 2.4/7 with Lemma 2.3 we get a proof t(B→C)→BA→CA . Then
we can use (λ~x.t(u∀~x.B→C~x))(∀~x.B→C)A to derive the continuation translation. We can
do this for all axioms in Γ . As applying Lemma 2.4/7 takes constant time, and
applying Lemma 2.3 takes linear time, generating one such proof takes linear time.
Hence, proving this takes linear time relative to the sum of the lengths of all
formulae.

2.1.2 Proof of Barr’s Theorem

Now we can prove Theorem 2.1: Assume ∆`tcA with A = ∀~x.B→C where ∆,B,C are
geometric and C does not contain a free variable occurring bound in ∆,B, let t be the
(classical) proof. Then s := t~xuB proves ∆,B`tcC, and λ~xλBs proves ∆`tcA again,
hence, ∆`tcA⇔ ∆,B`tcC, so it suffices to show that ∆,B`iC. By Theorem 2.6 and
Lemma 2.7 we have ∆,B`tcC⇒ ∆C,Bc`iCC ⇒ ∆,B`iCC, and with Lemma 2.3 we
get ∆,B`i(C→C)→C and therefore ∆,B`iC. As we use a composition of linear
algorithms, the algorithm generating this proof is linear relative to

∑
X∈∆ len(X).

2.2 The Proof by Negri, Plato and Strahm

We will look at a modification of the proof given in (5), which is based on a
suggestion by Thomas Strahm. It uses the sequent calculi G3c and G3im, and where
the original proof adds additional rules to include the axioms, we will prove that the
necessary properties, namely the admissibility of their structural rules and the cut
rule, are still valid if one allows additional, “geometric” axioms.
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Strahm suggested (for another calculus, however) that one could just add additional
axioms to the logical axioms and then prove the admissibility of cut elimination for
this new calculus. However, for G3im and G3c, it turns out that partial cut
elimination does not hold with general additional axioms. Still, the full formalism in
(5) is not necessary to prove Barr’s theorem. We give a similar formalism, using our
geometric axioms, and prove the necessary structural properties for a partial cut
elimination theorem.

Most of these structural theorems are just straightforward generalizations of the
corresponding structural theorems for the calculi without additional axioms.

2.2.1 G3im and G3c

The rules of the calculi G3im and G3c can be separated into rules for the
connectives, structural rules and the cut rule. Their rules handle multiple formulae
in the antecedents, which are interpreted conjunctively, and multiple formulae in the
succedents, which are interpreted disjunctively.

We write `G if the rules apply for both G3im and G3c, `Gc for G3c and `Gi for
G3im. `Gc corresponds to `tc in the sense that if a sequent Γ ⇒ A can be derived by
G3c, then Γ`tcA. `Gi corresponds to `i in the sense that if a sequent Γ ⇒ A can be
derived by G3im, then Γ`iA. In 3.2, we prove something similar for Calculus n.

The general rules for the connectives are

P atomic Axiom
P, Γ ⇒ ∆,P

L⊥⊥, Γ ⇒ ∆

A,B, Γ ⇒ ∆
L∧

A∧B, Γ ⇒ ∆

Γ ⇒ ∆,A Γ ⇒ ∆,B
R∧

Γ ⇒ ∆,A∧B

A, Γ ⇒ ∆ B, Γ ⇒ ∆
L∨

A∨B, Γ ⇒ ∆

Γ ⇒ ∆,A,B
R∨

Γ ⇒ ∆,A∨B

A[x := t], ∀xA, Γ ⇒ ∆
L∀∀xA, Γ ⇒ ∆

A[x := y], Γ ⇒ ∆
L∃∃xA, Γ ⇒ ∆

Γ ⇒ ∆, ∃xA,A[x := t]
R∃

Γ ⇒ ∆, ∃xA

Additionally, G3c has the rules
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Γ ⇒ ∆,A B, Γ ⇒ ∆
L→c

A→B, Γ ⇒ ∆

A, Γ ⇒ ∆,B
R→c

Γ ⇒ ∆,A→B
Γ ⇒ ∆,A[x := y]

R∀c
Γ ⇒ ∆, ∀xA

while G3im has corresponding rules

A→B, Γ ⇒ A B, Γ ⇒ ∆
L→i

A→B, Γ ⇒ ∆

A, Γ ⇒ B
R→i

Γ ⇒ ∆,A→B
Γ ⇒ A[x := y]

R∀i
Γ ⇒ ∆, ∀xA

There are variable conditions on y for L∃ and R∀c/i, namely that y must not occur
freely in the conclusions of the rules.

Structural rules for left and right weakening and contraction are

Γ ⇒ ∆ LW
A, Γ ⇒ ∆

Γ ⇒ ∆ RW
Γ ⇒ ∆,A

A,A, Γ ⇒ ∆
LC

A, Γ ⇒ ∆

Γ ⇒ ∆,A,A
RC

Γ ⇒ ∆,A

The cut rule is

Γ ⇒ ∆,A A, Γ ′ ⇒ ∆ ′
Cut

Γ , Γ ′ ⇒ ∆,∆ ′

and we call A the cut formula of that cut.

Definition As we call the rules L⊥ and Axiom logical axioms we call additional
axioms non-logical axioms. A main formula of a rule is an explicit formula in the
conclusion of that rule. The context preserving cut rule Cutcs is defined by

Γ ⇒ ∆,A A, Γ ⇒ ∆
Cutcs

Γ ⇒ ∆

We also call A the cut formula of that cut.

Lemma 2.8. `GΓ ,A⇒ A,∆ can be derived for every formula A.
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Proof By structural induction on A. For atomic A and ⊥ we have the axioms. For
A = B∧C, we have

A,B, Γ ⇒ A,∆ A,B, Γ ⇒ B,∆
A,B, Γ ⇒ A∧B,∆
A∧B, Γ ⇒ A∧B,∆

Similarly for A = B∨C. For A = ∀xB, let c not occur freely in Γ ,∆, then we have

A[x := c], Γ ⇒ ∆,A[x := c]

∀xA, Γ ⇒ ∆,A[x := c]

∀xA, Γ ⇒ ∆, ∀xA

Similarly for A = ∃xB. For A = B→C we may use

A→B, Γ ,A⇒ A B, Γ ⇒ B

A→B, Γ ,A⇒ B

A→B, Γ ⇒ ∆,A→B
in G3im, similarly for G3c.

Lemma 2.9. In G3c with arbitrary non-logical axioms, the cut rule can be replaced by the
context preserving cut rule.

Proof Let a proof tree be given that contains at least one application of the cut rule,
and α be a top-most application of it. Then α has the form

D
Γ ⇒ ∆,A

E
Γ ′,A⇒ ∆ ′

Cut
Γ , Γ ′ ⇒ ∆,∆ ′

Then we can replace α by the following derivation that uses the context preserving
cut rule:

D
Γ ⇒ ∆,A

RW
Γ ⇒ ∆ ′,∆,A

LW
Γ ′, Γ ⇒ ∆ ′,∆,A

E
Γ ′,A⇒ ∆ ′

RW
Γ ′,A⇒ ∆ ′,∆

LW
Γ ′, Γ ,A⇒ ∆ ′,∆

Cutcs
Γ , Γ ′ ⇒ ∆,∆ ′
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Definition A geometric axiom is a sequent P1, . . . ,Pp ⇒ ∃~y.M1 ∨ . . .∨Mm, where the
Pi are atomic, and the Mi are conjunctions of atomic formulae, and ~y is non-empty.

It should be immediately clear that this definition is related to geometric theories.
Before we can actually use it, we need to prove some properties of G3c that are
preserved when allowing geometric axioms.

Denote by G3cT the calculus G3c with additional geometric axioms (silently ignoring
the fact that it depends on the set of additional geometric axioms given, which will
always be clear or irrelevant), and by `GcT the entailment relation of this calculus.

The following is a trivial generalization of the substitution lemma given in (12):

Lemma 2.10. Assume `GcTnΓ ⇒ ∆, let x be free in Γ ,∆, such that it can be substituted by t
without variable collisions, and such that t does not contain any free variable used in a rule
application of L∃ or R∀i/c in the proof. Let the geometric axioms be closed under
substitution. Then `GcTnΓ [x := t]⇒ ∆[x := t].

Proof We prove this by induction on n. For n = 0, for the logical axioms it is trivial,
while for the geometric axioms we just assume it. The induction steps for the rules
involving the connectives are trivial as well, as these do not change variable
assignments.

For L∀, we have a proof of the form

`GcTnA[y := s], ∀yA, Γ ⇒ ∆

`GcTn+1∀yA, Γ ⇒ ∆

For x 6= y the induction step is trivial, so assume that x = y, that is, we want to
derive `GcTn+1(∀yA)[y := t], Γ [y := t]⇒ ∆[y := t] which is
`GcTn+1(∀yA), Γ [y := t]⇒ ∆[y := t]. By induction we can derive
`GcTnA[y := s][y := t], ∀yA, Γ [y := t]⇒ ∆[y := t], and therefore we get

`GcTnA[y := s][y := t], ∀yA, Γ [y := t]⇒ ∆[y := t]

`GcTn+1∀yA, Γ [y := t]⇒ ∆[y := t]

Similarly for R∃.

For L∃, we have
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`GcTnA[z := y], Γ ⇒ ∆

`GcTn+1∃zA, Γ ⇒ ∆

and by the variable condition we know that y does not occur freely in Γ ,∆, therefore
we may assume x 6= y without loss of generality. By assumption we also know that t
does not contain y, and therefore, `GcTnA[z := y][x := t], Γ [x := t]⇒ ∆[x := t], which
is derivable by induction hypothesis, satisfies the variable condition, and we can
derive

`GnA[z := y][x := t], Γ [x := t]⇒ ∆[x := t]

`Gn+1(∃zA)[x := t], Γ [x := t]⇒ ∆[x := t]

Similarly for R∀i/c.

Lemma 2.11. In G3cT, the following properties hold, which can be used to decompose
formulae:

1. If `GcTnA∧B, Γ ⇒ ∆, then `GcTnA,B, Γ ⇒ ∆.
2. If `GcTnΓ ⇒ ∆,A∨B, then `GcTnΓ ⇒ ∆,A,B.
3. If `GcTnA0 ∨A1, Γ ⇒ ∆, then `GcTnAi, Γ ⇒ ∆ for i ∈ {0, 1}.
4. If `GcTnΓ ⇒ ∆,A0 ∧A1, then `GcTnΓ ⇒ ∆,Ai for i ∈ {0, 1}.
5. If `GcTnΓ ⇒ A→B,∆, then `GcTnΓ ,A⇒ B,∆.
6. If `GcTnΓ ,A→B⇒ ∆, then `GcTnΓ ⇒ ∆,A and `GcTnΓ ,B⇒ ∆.
7. If `GcTnΓ ⇒ ∆, ∀xA, then `GcTnΓ ⇒ ∆,A[x := y] for all y such that
y 6∈ FV(Γ ,∆,A).

8. If `GcTn∃xA, Γ ⇒ ∆, then `GcTnA[x := y], Γ ⇒ ∆ for y 6∈ FV(Γ ,∆,A).

Proof By Lemma 2.9, we may assume that only context preserving cuts are used.
This is a generalization of the inversion lemma given in (12), according to which the
Theorem can be proved by induction on n, and we only add a special case for n = 0:
If we have a logical axiom, then we know that the decomposed formula must be in
the context of that axiom, since logical axioms only have ⊥ or atomic formulae
outside of their context. Then trivially, the given conclusion in each case is an axiom
too, as we only have to change the context of that logical axiom. For geometric
axioms, we know that 1,3,6,8 hold, as we only have atomic formulae on the left side
of these axioms. As everything must be inside an existential quantifier on the right
side, 2,5,7 and 4 hold. Therefore, for n = 0, we are done.

Lemma 2.12. Assume that all geometric axioms are closed under contraction and
substitution. Then

1. If `GcTnΓ ,A,A⇒ ∆, then `GcTnΓ ,A⇒ ∆.
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2. If `GcTnΓ ⇒ ∆,A,A, then `GcTnΓ ⇒ ∆,A.

From this Lemma it directly follows that the contraction rules LC and RC are
admissible in G3cT, except for chains of contractions directly below the geometric
axioms. This result, for G3c without geometric axioms, is also proved in (12).

Proof We may again assume by 2.9 that only context preserving cuts are used. A
proof of the admissibility of contraction is given in (12), and we only add another
induction base, namely the geometric axioms, for which we assume the lemma and
closedness under substitution, which is needed to apply our version of the
substitution lemma, Lemma 2.10.

We can similarly prove that the weakening rule is admissible as well, except for
chains of weakenings directly below (possibly contracted) geometric axioms.
Lemma 2.13. Let the set of geometric axioms be closed under the application of weakening
rules and substitutions. Then every G3cT-proof containing weakening rules can be converted
into a proof in which no weakening rules occur.

Proof Weakenings just extend the context, and we can trivially shift them to the top
of the proof in all rules that do not have variable conditions, and as all axioms are
closed under weakening, we will gain a shorter proof without the instances of
weakening.

For the rule L∃, we would have the situation

A[x := y], Γ ⇒ ∆

∃xA, Γ ⇒ ∆

∃xA, Γ ⇒ ∆,B

If y does not occur freely in B, we can just shift that weakening through the L∃
application. If not, let z be a variable not occurring yet. Then by Lemma 2.10 we can
derive A[x := z], Γ`GcT∆ where z is not free in B, and therefore we can convert the
whole derivation into

A[x := z], Γ ⇒ ∆

A[x := z], Γ ⇒ ∆,B
∃xA, Γ ⇒ ∆

and therefore shift this application of weakening up. Similarly for R∀c.

Instead of requiring the geometric axioms to be closed under the application of
structural rules, we could equivalently prove that structural rules can be omitted
except for chains of applications of structural rules directly below them, which is the
version we need in what follows.
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2.2.2 Partial Cut Elimination

Theorem 2.14 (Partial Cut Elimination). Let the geometric axioms be closed under
substitution. Then we can omit the structural rules, except for chains of structural rules
directly below geometric axioms, and the cut rule for cut formulae not being part of a
geometric axiom, from G3cT.

Proof By the above lemmata we can assume that the proof does not contain
structural rules, except for chains directly below the geometric axioms, and no
instance of a cut rule that is not context preserving is present. We define the adapted
height of a derivation as the height of this derivation, not counting chains of
structural rules below geometric axioms. We define the level of a cut as the sum of
the adapted heights of the proofs of its premises. The range of a cut is the range of its
cut formula. We show that every cut of which the cut formula does not occur in a
geometric axiom can be replaced by a cut with lower range or level. Hence, we will
be able to recursively replace all cuts until only cuts with level 0 are left, and then we
show that these can be removed, too.

So let a top most instance of a cut be given.

D
Γ ⇒ ∆,A

E
A, Γ ⇒ ∆

Cutcs
Γ ⇒ ∆

If Γ ⇒ ∆,A is a geometric axiom, or resulted from a contraction rule applied to one,
or from a weakening rule of which A is not the main formula, we are done, as the cut
has a cut formula occurring in a geometric axiom.

If Γ ⇒ ∆,A resulted from a weakening rule, this must be the last rule of a chain of
structural rules applied to a geometric axiom, and we have the situation

D
Γ ⇒ ∆ ′,A,A

E
A, Γ ⇒ ∆ ′,A

Cutcs
Γ ⇒ ∆ ′,A

which can be replaced by

D
Γ ⇒ ∆ ′,A,A

RC
Γ ⇒ ∆ ′,A
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which is legitimate since it just extends that chain of structural rules.

Assuming Γ ⇒ ∆,A is a logical axiom following from the rule Axiom, where A is not
main formula, the derivation looks like

Axiom
P, Γ ′ ⇒ P,∆ ′,A

E
A,P, Γ ′ ⇒ P,∆ ′

P, Γ ′ ⇒ ∆ ′,P

and we can get P, Γ ′ ⇒ ∆ ′,P directly. If A is main formula of Axiom the derivation
looks like

Axiom
A, Γ ′ ⇒ ∆ ′,A

E
A,A, Γ ′ ⇒ ∆ ′

A, Γ ′ ⇒ ∆ ′

But we can as well apply LC on A,A, Γ ′ ⇒ ∆ ′ to get A, Γ ′ ⇒ ∆ ′, and then remove this
application of a structural rule.

Assume Γ ⇒ ∆,A follows by L⊥. If A 6= ⊥ then ⊥ ∈ Γ , and hence the result can be
obtained from L⊥ directly. If A = ⊥, Γ ⇒ ∆,A can also be obtained by Axiom, and
therefore follows from the former case.

Similarly for A, Γ ⇒ ∆ following from Axiom or L⊥ where A is not the main
formula, and A, Γ ⇒ ∆ following from Axiom where A is the main formula.

The remaining case for logical axioms is A, Γ ⇒ ∆ following from L⊥, and A = ⊥. If
⊥ also is the main formula in D, it can only be of the form Form Γ ,⊥⇒ ∆,⊥, but
then A, Γ ⇒ ∆ has the form ⊥, Γ ⇒ ∆ ′,⊥, which is an axiom. So let ⊥ not be main
formula in D. If D has two premises, then the cut application has the form

D0
Γ ′ ⇒ ∆ ′,⊥

D1
Γ ′′ ⇒ ∆ ′′,⊥

R
Γ ⇒ ∆,⊥ ⊥, Γ ⇒ ∆

Γ ⇒ ∆

which can be transformed into

D0
Γ ′ ⇒ ∆ ′,⊥ ⊥, Γ ′ ⇒ ∆ ′

Γ ′ ⇒ ∆ ′

D1
Γ ′′ ⇒ ∆ ′′,⊥ ⊥, Γ ′′ ⇒ ∆ ′′

Γ ′′ ⇒ ∆ ′′
R

Γ ⇒ ∆
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We can proceed similarly if R has only one premise.

Since we handled with all cases where at least one premise of the cut was followed
by an axiom, let us now assume both premises did not follow from axioms.

Assume Γ ⇒ ∆,A follows from a rule R in which A is not the main formula. For R
with two premises the derivation then has the form

D0
Γ ′ ⇒ ∆ ′,A

D1
Γ ′′ ⇒ ∆ ′′,A

R
Γ ⇒ ∆,A

D2
A, Γ ⇒ ∆

Γ ⇒ ∆

which can be transformed into

D0
Γ ′ ⇒ ∆ ′,A

Γ , Γ ′ ⇒ ∆,∆ ′,A

D2
A, Γ ⇒ ∆

A, Γ , Γ ′ ⇒ ∆,∆ ′

Γ , Γ ′ ⇒ ∆,∆ ′(∗)

D1
Γ ′′ ⇒ ∆ ′′,A

Γ , Γ ′′ ⇒ ∆,∆ ′′,A

D2
A, Γ ⇒ ∆

A, Γ , Γ ′′ ⇒ ∆,∆ ′′

Γ , Γ ′′ ⇒ ∆,∆ ′′(∗∗)

(∗) (∗∗)
R

Γ ⇒ ∆

The structural rules can be replaced again by the above lemma. The levels of the new
cuts are therefore strictly smaller than the level of the cut before. Similarly for the
case that A, Γ ⇒ ∆ follows from a rule in which A is not the main formula. Similarly
for rules with one premise. The remaining case is that A is main formula in both
premises. In that case, we must look at the structure of A. For A = ⊥, it must be an
axiom, since no rule except an axiom can have ⊥ as a main formula. Assume
A = X∧ Y, then we have

D0
Γ ⇒ ∆,X

D1
Γ ⇒ ∆, Y

Γ ⇒ ∆,X∧ Y

D2
X, Y, Γ ⇒ ∆

X∧ Y, Γ ⇒ ∆

Γ ⇒ ∆
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It can be transformed into

D1
Γ ⇒ ∆, Y

D0
Γ ⇒ ∆,X
Y, Γ ⇒ ∆,X

D2
X, Y, Γ ⇒ ∆

Y, Γ ⇒ ∆

Γ ⇒ ∆

Again the applications of Struct can be removed. The level of neither new cut is
greater than the level of the cut we had before, and the ranges of both new cuts are
strictly smaller than the range of the cut we had before. Similarly for A = X∨ Y. For
A = X→Y we have

D0
Γ ,X⇒ Y,∆
Γ ⇒ X→Y,∆

D1
Γ ⇒ X,∆

D2
Γ , Y ⇒ ∆

Γ ,X→Y ⇒ ∆

Γ ⇒ ∆

It can be transformed into

D1
Γ ⇒ X,∆

D0
Γ ,X⇒ Y,∆

D2
Γ ,X, Y ⇒ ∆

Γ ,X⇒ ∆

Γ ⇒ ∆

Again we can remove the structural rules, the levels of the new cuts are not greater,
and the ranges of the new cuts are smaller. For A = ∀xD the derivation has the form

D0
Γ ⇒ ∆,D[x := y]

Γ ⇒ ∆, ∀xD

D1
∀xD,D[x := t], Γ ⇒ ∆

∀xD, Γ ⇒ ∆

Γ ⇒ ∆

Firstly, we can replace y in D0 by a term t, we call that new derivation D ′0.

D ′0
Γ ⇒ ∆,D[x := t]

D0
Γ ⇒ ∆,D[x := y]

D[x := t], Γ ⇒ ∆,D[x := y]

D[x := t], Γ ⇒ ∆, ∀xD
D1

∀xD,D[x := t], Γ ⇒ ∆

D[x := t], Γ ⇒ ∆

Γ ⇒ ∆
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Again the structural rules can be removed, the level of the resulting cut stays the
same since the height of the left premise is decreased by one while the height of the
right premise is increased by one, and the range of the resulting cut is smaller. The
cut on the right side has a smaller level. Similarly for A = ∃xD.

Corollary 2.15. In G3c (without additional non-logical axioms) we can omit the cut rule
and the structural rules.

2.2.3 The Proof

Lemma 2.16. A sequent of the form⇒ ∀~x.P0→∃~y.P1 ∨ . . .∨ Pn where ~y is not empty, and
the Pi are conjunctions of atomic formulae is derivable from geometric axioms without using
cuts, using the rules of G3im (or G3c).

Proof Firstly, we can derive⇒ ∀~x.P0→∃~y.P1 ∨ . . .∨ Pn from⇒ P0→∃~y.P1 ∨ . . .∨ Pn
by applying R∀i or similarly, R∀c. There is no danger of violating a variable
condition, as only one formula is present. Then by R→c/i, we can derive this sequent
from P0 ⇒ ∃~y.P1 ∨ . . .∨ Pn. Then P0 = P00 ∧ . . .∧ P0p0

can be derived from
P00, . . . ,P0p0

⇒ ∃~y.P1 ∨ . . .∨ Pn by multiple applications of L∧, and this is a
geometric axiom.

Now assume we have a proof for `GcΓ ⇒ G where Γ is a geometric theory and G is a
geometric implication, and all variables occurring freely in some element of Γ ,G are
parameters. By 2.1, we may assume that all elements of Γ have the form

∀~x.P0→∃~y.P1 ∨ . . .∨ Pn

and these can be derived from geometric axioms by Lemma 2.16. If G = ∀~x.A→B
with geometric formulae A and B, from⇒ G we may derive the sequent A⇒ B in a
way similar to the destructuring of the Gi shown below, using the cut rule.

The resulting proof is a proof in G3cT, and therefore, partial cut elimination and
admissibility of weakening rules except for chains directly below the geometric
axioms hold. But in such a proof, the formulae in the premises of rules are
subformulae of the formulae in the conclusion or in the geometric axioms, and thus,
as the final conclusion of this proof does not contain implications and universal
quantifications, none of the formulae above may contain them. But this means that
no rule for ∀ and→ can be applied, and hence, the proof only uses rules that G3c
and G3im have in common. From the conclusion, by R→c and R∀i we can derive⇒ G again. As all the Gi are closed except for parameters, we may extend all
contexts in the antecedents by Γ without the danger of violating a variable condition,
gaining a proof of Γ ⇒ G, but losing the property that the axioms are all geometric
axioms. However, `GiΓ ⇒ Gi is derivable by Lemma 2.8.
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Let Gi = ∀~x.M0→∃~y.M1 ∨ . . .∨Mm where the Mi are conjunctions of atomic
formulae, and M0 = A0 ∧ . . .∧Aa. From `GiΓ ⇒ Gi we can then firstly derive

Γ ⇒ Gi

M0→∃~y.M1 ∨ . . .∨Mm ⇒M0→∃~y.M1 ∨ . . .∨Mm

∀~x.M0→∃~y.M1 ∨ . . .∨Mm ⇒M0→∃~y.M1 ∨ . . .∨Mm

Γ ⇒M0→∃~y.M1 ∨ . . .∨Mm

in G3im. We use the cut rule for G3im (which is also admissible according to (5)). By

M0,M0→∃~y.M1 ∨ . . .∨Mm, Γ ⇒M0 ∃~y.M1 ∨ . . .∨Mm, Γ ⇒ ∃~y.M1 ∨ . . .∨Mm

M0,M0→∃~y.M1 ∨ . . .∨Mm, Γ ⇒ ∃~y.M1 ∨ . . .∨Mm

we can decompose the implication. Using

A0, . . . ,Aa ⇒ A0 · · · A0, . . . ,Aa ⇒ Aa
A0, . . . ,Aa ⇒ A0 ∧ . . .∧Aa A0 ∧ . . .∧Aa, Γ ⇒ ∃~y.M1 ∨ . . .∨Mm

A0, . . . ,Aa, Γ ⇒ ∃~y.M1 ∨ . . .∨Mm

we may also decompose the conjunction. Using this, we can derive the geometric
axioms with the Γ -extended contexts intuitionistically.

Applying this to all geometric axioms we get an intuitionistic proof for `GiΓ ⇒ G
(that may not be cut free, though). This proves Theorem 2.1.

3 Orevkov’s Theorem

In (7), Orevkov gives a complete classification of singular sequents Γ ⇒ A for which
classical derivability implies intuitionistic derivability in terms of forbidden positive
or negative occurrences of connectives. An equivalent result with a slightly different
notation is given in (4) by Nadathur.

Glivenko sequent classes are sets of sequents that are classically derivable iff they are
intuitionistically derivable. In (7), a full classification of such Glivenko sequent
classes with respect to positivity and negativity of connectives is given.
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Definition A σ-class is a subset of restrictions
{∧+, ∧−, ∨+, ∨−,→+,→−, ¬+, ¬−, ∀+, ∀−, ∃+, ∃−}. A sequent belongs to a σ-class if it
does not contain any of its +-signed connectives positively, and not contain any of its
−-signed connectives negatively. A σ-class is called complete Glivenko class if every
classically derivable singular sequent belonging to this class is also intuitionistically
derivable, while for every class containing fewer restrictions, this is not the case.

Theorem 3.1 (Orevkov). The following list is a complete list of σ-classes which are complete
Glivenko classes:

{→+, ¬+, ∀+}, {→+, ¬+, ∨−}, {→+, ¬+, ∀−}, {→−, ¬−, ∨+, ∃+}, {→−, ¬−, ∨+,→+, ∀+},
{→−, ¬−, ∨+,→+, ∨−}, {→−, ¬−, ∨+,→+, ∀−}

In the following chapters, we will concentrate on {→+, ¬+, ∨−}.

3.1 Nadathur’s Proof

In (4), the author allows the symbols >, ⊥, ∧, ∨,→, ∃, ∀, and defines ¬A := A→⊥.
He uses the following calculus, which we will refer to as Calculus n. We will use `n
as its derivability relation.

There are axioms

Γ ⇒ > A atomic
A, Γ ⇒ ∆,A

There are contraction rules

Γ ,B,B⇒ ∆
contr-L

Γ ,B⇒ ∆

Γ ⇒ ∆,B,B
contr-R

Γ ⇒ ∆,B

There are operational rules

Γ ⇒ ∆,⊥
⊥-R

Γ ⇒ ∆,D

Bi, Γ ⇒ ∆ i ∈ {1, 2}
∧-L

B1 ∧B2, Γ ⇒ ∆

Γ ⇒ ∆,B Γ ⇒ ∆,D
∧-R

Γ ⇒ ∆,B∧D

B, Γ ⇒ ∆ D, Γ ⇒ ∆
∨-L

B∨D, Γ ⇒ ∆

Γ ⇒ ∆,Bi i ∈ {1, 2}
∨-R

Γ ⇒ ∆,B1 ∨B2

Γ ⇒ ∆,B D, Γ ⇒ Θ →-L
B→D, Γ ⇒ ∆,Θ

B, Γ ⇒ ∆,D →-R
Γ ⇒ ∆,B→D
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In the following operational rules, t denotes a term, and c denotes a constant that
does not occur in the formulae of the conclusion.

B[x := t], Γ ⇒ ∆
∀-L∀xB, Γ ⇒ ∆

Γ ⇒ ∆,B[x := c]
∀-R

Γ ⇒ ∆, ∀xB

B[x := c], Γ ⇒ ∆
∃-L∃xB, Γ ⇒ ∆

Γ ⇒ ∆,B[x := t]
∃-R

Γ ⇒ ∆, ∃xB

Definition A proof in Calculus n shall be called a C-proof. A proof in the Calculus n
where every occurring succedent contains exactly one formula shall be called an
I-proof. C-proofs are classical proofs, in the sense that there is a C-proof for `nΓ ⇒ A
iff we have Γ`tcA. I-proofs are intuitionistic proofs, in the sense that iff there is an
I-proof for `nΓ ⇒ A then we have Γ`iA. (This will be proved in 3.2).

Notice that we did not require the sequents to be singular for I-proofs.

Firstly, a substitution lemma similar to Lemma 2.10 holds, from which we can
conclude the admissibility of a weakening rule, as we did for G3c:

Lemma 3.2. Assume `nnΓ ⇒ ∆, let x be free in Γ ,∆, such that it can be substituted by t
without variable collisions, and such that t does not contain any free variable used in a rule
application of ∃-L or ∀-R in the proof. Then `nnΓ [x := t]⇒ ∆[x := t]. If the first proof is an
I-proof, then the resulting proof is an I-proof as well.

Lemma 3.3. If `nnΓ ⇒ ∆, then `nnA, Γ ⇒ ∆. If the first proof is an I-proof, then the
resulting proof is an I-proof as well.

Proof By induction on n. The case n = 0 is trivial, all axioms have a context in the
antecedent. For the induction step, we assume that for all proofs of height ≤ n we
have already proved the property, and distinguish according to the last rule applied.

Since the rules without variable conditions all have an extensible context in the
antecedent, we can by induction hypothesis extend the contexts of the premises, and
derive the weakened sequence. For example, for→-L, we can convert

`nnΓ ⇒ ∆,B `nnD, Γ ⇒ Θ

`nn+1B→D, Γ ⇒ ∆,Θ

into

`nnA, Γ ⇒ ∆,B `nnD,A, Γ ⇒ Θ

`nn+1B→D,A, Γ ⇒ ∆,Θ
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For the rules with variable conditions, namely ∃-L and ∀-R the added formula A may
violate the variable condition. Assume we have

`nnB[x := c], Γ ⇒ ∆

`nn+1∃xB, Γ ⇒ ∆

If c does not occur in A we can just extend the premise. If c occurs in A, the variable
condition would not be satisfied. Let d be a new variable that does not occur yet. By
the variable condition, we know that c does not occur in ∀xB, Γ ,∆, therefore
B[x := d] = B[x := c][c := d], Γ [c := d] = Γ , ∆[c := d] = ∆, and therefore by Lemma 3.2
we can derive `nnB[x := d], Γ ⇒ ∆. Then by induction, we can also derive
`nnB[x := d],A, Γ ⇒ ∆, and since A does not contain d, the variable condition holds
and we get

`nnB[x := d],A, Γ ⇒ ∆

`nn+1∃xB,A, Γ ⇒ ∆

Similarly for ∀-R.

We will focus on the part of Nadathur’s proof that is the analogon to Orevkov’s
σ-class {→+, ¬+, ∨−}.

Theorem 3.4. Let ∆ be nonempty, and Γ ⇒ ∆ have a C-proof in which no instance of→-R
or ∨-L is used. Then Γ ⇒ G has an I-proof for some G ∈ Γ .

Proof We use induction on the heights of C-proofs. For height 0, only axioms can be
used. For

A, Γ ′ ⇒ ∆ ′,A
we can give the I-proof

A⇒ A

and

Γ ⇒ >
is already an I-proof. For heights n > 1 we assume the theorem holds for all proofs
of height m < n, consider the last rule used in the proof, and prove that it holds for
the whole proof if it holds for the proofs of the sequent premises of this last rule. For
the contraction rules, ∀-L, ∃-L, ∨-R and ∧-L this is trivial. For ⊥-R, we have an
I-proof for Γ ⇒ A for some A ∈ ∆ ′,⊥. If A = ⊥, then we can use

|
Γ ⇒ ⊥ ⊥-R
Γ ⇒ D
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for every D ∈ ∆. If A ∈ ∆ ′, then already A ∈ ∆. For→-L, we assume the induction
hypothesis for proofs of Γ ′ ⇒ ∆ ′,B and D, Γ ′ ⇒ Θ. If there is an I-proof of Γ ′ ⇒ A for
some A ∈ ∆ ′, we can weaken the antecedent by B→D and get an I-proof for
B→D, Γ ′ ⇒ A. Otherwise, there must be an I-proof of Γ ′ ⇒ B, and an I-proof of
D, Γ ⇒ A for some A ∈ Θ. Then by

|
Γ ′ ⇒ B

|
D, Γ ′ ⇒ A →-L

B→D, Γ ′ ⇒ A

the theorem holds. For ∧-R, we have the premises Γ ⇒ ∆ ′,B and Γ ⇒ ∆ ′,D. If we
have an I-proof for Γ ⇒ A for some A ∈ ∆ ′, then we are already done. Otherwise, by
induction hypothesis, we have I-proofs for Γ ⇒ B and Γ ⇒ D, and therefore by

|
Γ ⇒ B

|
Γ ⇒ D

∧-R
Γ ⇒ B∧D

For ∀-R, we have an I-proof for Γ ⇒ X for some X ∈ ∆ ′,B[x := c]. For X ∈ ∆ ′ we are
done, for X = B[x := c] we can simply apply ∀-R on Γ ⇒ X. Similarly for ∃-R.

The given algorithm transforming a C-proof in an I-proof is linear in the number of
nodes of the proof tree, if implemented in the right way; the only case where this is
non-trivial is when we have to extend the contexts in the→-R case. On the one hand,
with Lemma 3.3 we could add a left-weakening rule

Γ ⇒ ∆
A, Γ ⇒ ∆

On the other hand, multisets can be efficiently implemented using binary trees, and
with some pointer magic, extending all contexts may only involve the change of a
pointer; however, this requires that the proof is already given in that form. If none of
these actions is taken, then the algorithm remains quadratic, at least.

Notice that Calculus n is cut free by default, though, according to (4), cuts are
admissible.

Corollary 3.5. If a singular sequent Γ ⇒ G not containing positive occurrences of→ and
not containing negative occurrences of ∨ has a C-proof, then it has an I-proof.

Proof This follows directly from the above theorem: In no rule in Calculus n, a
connective can be removed, and the usage of→-R and ∨-L yields a positive→ and a
negative ∨. Thus, in a proof of our Γ ⇒ G these rules cannot occur.
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This is equivalent to the case {→+, ¬+, ∨−} of sufficiency of Theorem 3.1: Positive
occurrences of→ and negative occurrences of ∨ are forbidden. A positive occurrence
of ¬ in terms of (4) yields a positive occurrence of an implication, as ¬A is an
abbreviation of A→⊥.

For the necessity, see Section 5.

3.2 The Equivalence of Calculus n and Natural Deduction

For the conversion of proofs in Calculus n into proofs in natural deduction, we
assume all sequences are finite, and regard sequents Γ ⇒ ∆ as the universal closure
of (

∧
Γ)→∨

∆, that is, if Γ = A1, . . . ,An and ∆ = B1, . . . ,Bm and the sequent Γ ⇒ ∆ is
derivable in Calculus n, we show that ∀~x.A1 ∧ . . .∧An→B1 ∨ . . .∨Bm is derivable in
natural deduction, where ~x contains all free variables of A1 ∧ . . .∧An→B1 ∨ . . .∨Bm
and as usual, the empty disjunction becomes ⊥ and the empty conjunction becomes
>. As we add > to the list of the axioms, we have ⊥∨D↔ D and >∧B↔ B which
keeps everything consistent. (If we do not want to add > as an axiom, we may as
well define it by ¬⊥, which is derivable.)

With this, of course, Γ ⇒ and⇒ ∆ have the same embedding as Γ ⇒ ⊥ and >⇒ ∆,
but there is no need of injectivity.

Associativity and commutativity of ∧ and ∨ are trivially derivable in natural
deduction. Therefore, we silently assume that a multiset Γ ,A has been translated into
G ◦A, where ◦ ∈ {∨, ∧} and G is the conjunction or disjunction of the formulae in Γ
for explicit formulae A.

For the axiomatic rules, we have λ~xλyGtT and λ~xλyA∧G .y(uA, vG. ∨+ u). contr-L and
contr-R are derivable via

∀~x.G∧B∧B→D
G∧B∧B→D [g : G∧B]

[g : G∧B] [B]

B

G∧B∧B
D g

G∧B→D
∀~x.G∧B→D

∀~x.G→D∨B∨B

G→D∨B∨B [g : G]

D∨B∨B [D∨B]

[B]

D∨B

D∨B g
G→D∨B
∀~x.G→D∨B
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⊥-R is derivable by

∀~x.G→D∨⊥
G→D∨⊥ [g : G]

D∨⊥
[D]

D∨ E

⊥→D [⊥]

D
D∨ E

D∨ E g
G→D∨ E
∀~x.G→D∨ E

∧-L and ∧-R are derivable by

∀~x.Bi ∧G→D
Bi ∧G→D

[w : B1 ∧B2] [Bi]

Bi [g : G]

Bi ∧G

D g
G→D w

B1 ∧B2→G→D Lemma 2.4/2
(B1 ∧B2) ∧G→D
∀~x.(B1 ∧B2) ∧G→D

∀~x.G→D∨B

G→D∨B g : G

D∨B

[D]

...
D∨ (B∧ E)

∀~x.G→D∨ E

G→D∨ E g : G

D∨ E

[D]

D∨ (B∧ E)

[B] [E]

B∧ E
D∨ (B∧ E)

D∨ (B∧ E)

D∨ (B∧ E)
g

G→D∨ (B∧ E)

∀~x.G→D∨ (B∧ E)

∨-L and ∨-R are derivable by

u : B∨ E

∀~x.B∧G→D
B∧G→D [B] [g : G]

B∧G
D

∀~x.E∧G→D
E∧G→D [E] [g : G]

E∧G
D

D g
G→D u

(B∨ E)→G→D
Lemma 2.4/2

(B∨ E) ∧G→D
∀~x.(B∨ E) ∧G→D
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∀~x.G→D∨Bi
G→D∨Bi [g : G]

D∨Bi

[D]

D∨ (B1 ∨B2)

[Bi]

B1 ∨B2
D∨ (B1 ∨B2)

D∨ (B1 ∨B2) g
G→D∨ (B1 ∨B2)

∀~x.G→D∨ (B1 ∨B2)

For ∀-L and→-L we have

∀~y.B[x := t] ∧G→D
B[x := t] ∧G→D

[b : ∀xB]

B[x := t] [g : G]

B[x := t] ∧G

D g
G→D

b
(∀xB)→G→D

Lemma 2.4/2
(∀xB∧G)→D
∀~y.(∀xB) ∧G→D

∀~x.G→D∨B

G→D∨B [g : G]

D∨B

[D]

D∨Q

∀~x.E∧G→Q
E∧G→Q

[i : B→E] [B]

E [g : G]

E∧G

Q

D∨Q

D∨Q
g

G→D∨Q
i

(B→E)→G→D∨Q
Lemma 2.4/2

(B→E) ∧G→D∨Q

∀~x.(B→E) ∧G→D∨Q

For ∃-L and ∃-R we have
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[b : ∃xB]

[B(= B[x := c][c := x])]

∃cB[x := c]

∃cB[x := c]

∀~y.B[x := c] ∧G→D
B[x := c] ∧G→D [B[x := c]] [g : G]

B[x := c] ∧G

D

D g
G→D

b
(∃xB)→G→D

Lemma 2.4/2
(∃xB) ∧G→D
∀~y.(∃xB) ∧G→D

∀~y.G→D∨B[x := t]

G→D∨B[x := t] [g : G]

D∨B[x := t]

[D]

D∨ ∃xB

[B[x := t]]

∃xB
D∨ ∃xB

D∨ ∃xB g
G→D∨ ∃xB
∀~y.G→D∨ ∃xB

For the singular versions of→-R and ∀-R we have

∀~x.B∧G→E
B∧G→E [b : B] [g : G]

B∧G
E

b
B→E g

G→(B→E)
∀~x.G→(B→E)

∀~y.G→B[x := c]

G→B[x := c] [g : G]

B[x := c]
(*)∀cB[x := c]

B[x := c][c := x](= B)
(**)∀xB g

G→∀xB
∀~y.G→∀xB

where in (*) we use the fact that c is a constant that does not occur in G so the
variable condition is satisfied, and in (**) we use that if x occurs in G then x ∈ ~y.

For the multi-succedent versions of→-R and ∀-R we need traditional classical logic,
which complies with the definitions of I-proofs and C-proofs.
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We will use the tertium non datur A∨ ¬A which is derivable in traditional classical
logic for all formulae A by

[u : ¬(A∨ ¬A)]

[u : ¬(A∨ ¬A)]

[v : A]

A∨ ¬A

⊥ v
¬A

A∨ ¬A

⊥ u
¬¬(A∨ ¬A)

stab
A∨ ¬A

Now the proof for multi-succedent→-R goes

∀~x.B∧G→D∨ E

B∧G→D∨ E

b : B g : G

B∧G
D∨ E

[D]

D∨ (B→E)
[E]

[k : B]
B→E

D∨ (B→E)
D∨ (B→E)

(*)

|
⊥→E n : ¬B [b : B]

⊥
E

b
B→E

D∨ (B→E)
(**)

|
B∨ ¬B (*) (**)

b,n
D∨ (B→E)

g
G→D∨ (B→E)
∀~x.G→D∨ (B→E)

And the proof for multi-succedent ∀-R goes
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∀~y.G→D∨B[x := c]

G→D∨B[x := c] g : G

D∨B[x := c]

|
⊥→B[x := c]

n : ¬D [D]

⊥
B[x := c] [B[x := c]]

B[x := c]
(*)∀cB[x := c]

B(= B[x := c][c := x])
(**)∀xB

D∨ ∀xB
(***)

|
D∨ ¬D

[d : D]

D∨ ∀xB (***)
d,n

D∨ ∀xB g
G→D∨ ∀xB
∀~y.G→D∨ ∀xB

Where (*) and (**) are like in the singular variant.

Notice that only ⊥-R and the multi-succedent versions of ∀-R and→-R use ex falso
quodlibet, thus the following lemma holds.

Lemma 3.6. An I-proof in Calculus n without applications of ⊥-R can be converted into a
minimal proof in natural deduction.

We gave an embedding of the Calculus n into natural deduction. As for every rule
there can be given a simple template to translate it into natural deduction, if we
ignore the necessity of ordering disjunctions and conjunctions, this would be
possible in linear time relative to the number of nodes of the proof, so in an actual
implementation, it is desirable to minimize the parts where conjunctions and
disjunctions are reorganized. Reorganizing conjunctions works in linear time:
Disassembling the conjunctions takes one step for every ∧, and then putting them
together again in another direction as well. For example, to convert
A∧ (B∧ (C∧D)) into ((A∧B) ∧C) ∧D, we need the derivation
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A∧ (B∧ (C∧D))

[p : B∧ (C∧D)]

[q : C∧D]

[a : A] [b : B]

A∧B [c : C]

(A∧B) ∧C [d : D]

((A∧B) ∧C) ∧D
c,d

((A∧B) ∧C) ∧D
b,q

((A∧B) ∧C) ∧D
a,p

((A∧B) ∧C) ∧D

Ordering disjunctions takes at most quadratic time relative to the length of the
formula: Disassembling it forks once for every ∧ or ∨, and in every fork, we need to
introduce (in the worst case) every ∧ or ∨ again.

For the other direction we show that if t is an intuitionistic (traditional-classical)
proof and seq(t) = Γ ⇒ A, then there is an I-proof (C-proof) in Calculus n deriving
Γ ⇒ A.

We need two more rules which can be shown to be valid in Calculus n. Firstly, a left
weakening rule for singular sequents, which is valid according to Lemma 3.3.

Γ ⇒ A LWn
B, Γ ⇒ A

Secondly, the axiomatic rule deriving A, Γ ⇒ ∆,A requires A to be atomic, for the
singular calculus, it becomes A, Γ ⇒ A, and we show that in the singular calculus we
can derive B, Γ ⇒ B for arbitrary B by structural induction (where c shall be a
constant not occurring in Γ in every step):

B, Γ ⇒ B

B∧C, Γ ⇒ B

C, Γ ⇒ C

B∧C, Γ ⇒ C

B∧C, Γ ⇒ B∧C

B, Γ ⇒ B

B, Γ ⇒ B∨C

C, Γ ⇒ C

C, Γ ⇒ B∨C

B∨C, Γ ⇒ B∨C

B, Γ ⇒ B C,B, Γ ⇒ C

B→C,B, Γ ⇒ C

B→C, Γ ⇒ B→C
B[x := c], Γ ⇒ B[x := c]

∀xB, Γ ⇒ B[x := c]

∀xB, Γ ⇒ ∀xB
B[x := c], Γ ⇒ B[x := c]

B[x := c], Γ ⇒ ∃xB
∃xB, Γ ⇒ ∃xB

By (4) we know that a cut rule holds:

44



Γ1 ⇒ A A, Γ2 ⇒ B

Γ1, Γ2 ⇒ B

We limit ourselves to singular sequents, except for showing stability, as stability - of
course - cannot be shown intuitionistically. Stability can be derived by

¬¬A,A⇒ A,⊥
¬¬A⇒ A, ¬A

⊥, ¬¬A⇒ ⊥
⊥, ¬¬A⇒ A

¬¬A, ¬¬A⇒ A,A
¬¬A⇒ A,A
¬¬A⇒ A⇒ ¬¬A→A

which actually requires an instance of the multi-succedent implication introduction.
For ex falso quodlibet, we have the derivation

⊥⇒ ⊥
⊥⇒ A⇒ ⊥→A

The introduction rules for ∀, ∃, ∧, ∨,→ in natural deduction directly correspond to
the rules for the right side in Calculus n, except that we may not have equal contexts
on both premises, which can be changed by applying instances of the left weakening
rule. For the elimination rules we need a cut rule

Γ1 ⇒ ∆1,B B, Γ2 ⇒ ∆2
Γ1, Γ2 ⇒ ∆1,∆2

Γ1 ⇒ B B, Γ2 ⇒ C

Γ1, Γ2 ⇒ C

which is admissible according to (4). For→− we have the sequents Γ ′′ ⇒ A→B and
Γ ′ ⇒ A and derive Γ ′′, Γ ′ ⇒ B. So we assume that we already can derive sequents
Γ ′′ ⇒ A→B and Γ ′ ⇒ A, and weaken both sequents to Γ ⇒ A and Γ ⇒ A→B with
Γ = Γ ′, Γ ′′. Then we can derive Γ ⇒ B by

Γ ⇒ A→B Γ ⇒ A

Γ ,A⇒ A Γ ,B⇒ B

Γ ,A,A→B⇒ B

Γ ,A→B⇒ B

Γ ⇒ B
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We proceed similarly for ∨−

Γ ⇒ A∨B

Γ ,A⇒ C Γ ,B⇒ C

Γ ,A∨B⇒ C

Γ ⇒ C

and for ∧−

Γ ⇒ A∧B

Γ ,A,B⇒ C

Γ ,A∧B,B⇒ C

Γ ,A∧B,A∧B⇒ C

Γ ,A∧B⇒ C

Γ ⇒ C

and for ∀−

Γ ⇒ ∀xA Γ ,A[x := t]⇒ A[x := t]

Γ , ∀xA⇒ A[x := t]

Γ ⇒ A[x := t]

For ∃−, we must take care of the variable condition: We have a derivation with the
sequent Γ ⇒ ∃xA, and a derivation Γ ′,A⇒ C where x must not occur freely in C and
Γ ′, therefore we may have to replace formulae by α-equivalent ones, that is, by
formulae in which bound variables are renamed. By

A[x := c]⇒ A[x := c]

∀xA⇒ A[x := c]

∀xA⇒ ∀y.A[x := y]

and

A[x := c]⇒ A[x := c]

A[x := c]⇒ ∃y.A[x := y]

∃xA⇒ ∃y.A[x := y]

we know that this is allowed, and therefore, for ∃-L it is sufficient to have the
variable not occurring freely in the conclusion, and we may use
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Γ ⇒ ∃xA Γ ′,A⇒ C

Γ ′, ∃xA⇒ C

Γ , Γ ′ ⇒ C

This way we have an embedding of natural deduction into Calculus n, and vice
versa. We can therefore use some structural properties of Calculus n to prove
properties of proofs in natural deduction:

Lemma 3.7. If Γ`iA such that the sequent Γ ⇒ A does not contain ⊥ negatively, then
Γ`mA.

Proof By Lemma 3.6, it suffices to show that no instance of ⊥-R can be used in an
I-proof of `nΓ ⇒ A.

Firstly we notice that all the rules preserve signa of the (sub)formulae in the
sequents. The signa of the formulae in the contexts stay the same. Introducing a
connective or quantifier other than→ does not change the signa of the explicit
formulae either, nor does contraction. →-R and→-L take a positive and a negative
formula, and create an implication out of them. Still, the signa of the explicit
formulae of these rules are preserved.

The rules that may introduce a subformula ⊥ in the succedent while ⊥ not being a
subformula in a succedent of the premises are ∨-R,→-R and the axiom deriving
Γ ,⊥⇒ ⊥. However, after an application of ∨-R or→-R, ⊥ will be a proper
subformula, and since all rules only build up formulae, there cannot be an
application of ⊥-R, which clearly requires ⊥ not to be a proper subformula. Thus, if
we have an application of ⊥-R, this ⊥ must have been introduced by an axiom
deriving Γ ,⊥⇒ ⊥.

But that sequent contains a negative occurrence of ⊥, and as ⊥-R only removes a
positive ⊥, after all further rules a negative occurrence of ⊥ will remain, possibly
being a subformula of some larger formula, as all rules only build up (it may be
main formula of a contraction rule, but the resulting sequent still contains a negative
occurrence of ⊥).

Therefore, with an application of ⊥-R, there must be a negative occurrence of ⊥ in
the resulting sequent, which we assumed not to have.

Thus, we will in fact get a minimal proof.

3.3 A Sketch of Orevkov’s Proof

The proof given by Orevkov in (7) is extremely hard to read, relevant parts are just
referenced to other papers, and the major part is rather technical, and since we are
using a different notation, outside our scope. For historical reasons, we sketch the
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proof for the sequent class {→+, ¬+, ∨−}, as this will be the case we will concentrate
on. We will additionally give some essential concepts from (2) and (3) which are only
cited in (7). However, we are trying to give an impression on how this proof
essentially works, especially since it seems to be the first proof of that kind and is
very similar to the other proofs we have seen. We will adapt the rules given in (7) to
our notation. In particular, (7) considers rules of a calculus as templates, and what
we actually call a rule (the template with explicit values) is considered as a
realization of that rule. We will however use our usual notation, differing from (7),
and this should be kept in mind when comparing this text to (7).

3.3.1 The Calculi

The formalism used in (7) does not have a falsum ⊥, but therefore has negation ¬ as
an elementary connective. By a we shall mean a constant in what follows, and by t
an arbitrary term. The classical calculus C+, for which we use the entailment relation
`C+ , has the rules

Axiom
A⇒ A

Γ ⇒ ∆ [Y`C+ ]
Γ ,A⇒ ∆

Γ ⇒ ∆ [`C+Y]
Γ ⇒ ∆,A

A, Γ ′ ⇒ ∆ ′,B,∆ ′′
[`C+→]

Γ ′ ⇒ ∆ ′, (A→B),∆ ′′ Γ ′, Γ ′′ ⇒ ∆ ′,A Γ ′,B, Γ ′′ ⇒ ∆ ′
[→`C+ ]

Γ ′, (A→B), Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ ∆ ′,A,∆ ′′ Γ ′ ⇒ ∆ ′,B,∆ ′′
[`C+∧]

Γ ′ ⇒ ∆ ′, (A∧B),∆ ′′

Γ ′,A,B, Γ ′′ ⇒ ∆ ′
[∧`C+ ]

Γ ′, (A∧B), Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ ∆ ′,A,B,∆ ′′
[`C+∨]

Γ ′ ⇒ ∆ ′′, (A∨B),∆ ′′ Γ ′,A, Γ ′′ ⇒ ∆ ′ Γ ′,B, Γ ′′ ⇒ ∆ ′
[∨`C+ ]

Γ ′, (A∨B), Γ ′′ ⇒ ∆ ′
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A, Γ ′ ⇒ ∆ ′,∆ ′′
[`C+¬]

Γ ′ ⇒ ∆ ′, ¬A,∆ ′′
Γ ′, Γ ′′ ⇒ ∆ ′,A

[¬`C+ ]
Γ ′, ¬A, Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ A[x := a]
[`C+∀]

Γ ′ ⇒ ∆ ′, ∀xA,∆ ′′
Γ ′,A[x := t], ∀xA, Γ ′′ ⇒ ∆ ′

[∀`C+ ]
Γ ′, ∀xA, Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ ∆ ′,A[x := t], ∃xA,∆ ′′
[`C+∃]

Γ ′ ⇒ ∆ ′, ∃xA,∆ ′′
Γ ′,A[x := a], Γ ′′ ⇒ ∆ ′

[∃`C+ ]
Γ ′, ∃xA, Γ ′′ ⇒ ∆ ′

where in `C+∀ and ∃`C+ a is free for x in A, and does not occur freely in Γ ′, Γ ′′, ∆,
∃xA and ∀xA, and where in ∀`C+ and `C+∃, t is free for x in A.

We call [Y`C+ ] and [`C+Y] thinning rules, and every other rule except Axiom we call
logical rules.

The intuitionistic (multi-succedent) calculus K+
m, for which we use the entailment

relation `K+
m

, has the rules

Axiom
A⇒ A

Γ ⇒ ∆ [Y`K+
m

]
Γ ,A⇒ ∆

Γ ⇒ ∆ [`K+
m
Y]

Γ ⇒ ∆,A

A, Γ ′ ⇒ B
[`K+

m
→]

Γ ′ ⇒ ∆ ′,A→B,∆ ′′
Γ ′,A→B, Γ ′′ ⇒ ∆ ′ Γ ′,B, Γ ′′ ⇒ ∆ ′

[→`K+
m

]
Γ ′,A→B, Γ ′′,∆ ′

Γ ′ ⇒ ∆ ′,A,∆ ′′ Γ ′ ⇒ ∆ ′,B,∆ ′′
[`K+

m
∧]

Γ ′ ⇒ ∆ ′,A∧B,∆ ′′
Γ ′,A,B, Γ ′′ ⇒ ∆ ′

[∧`K+
m

]
Γ ′,A∧B, Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ ∆ ′,A,B,∆ ′′
[`K+

m
∨]

Γ ′ ⇒ ∆ ′,A∨B,∆ ′′
Γ ′,A, Γ ′′ ⇒ ∆ ′ Γ ′,B, Γ ′′ ⇒ ∆ ′

[∨`K+
m

]
Γ ′,A∨B, Γ ′′ ⇒ ∆ ′

A, Γ ′ ⇒
[`K+

m
¬]

Γ ′ ⇒ ∆ ′, ¬A,∆ ′′
Γ ′, ¬A, Γ ′′ ⇒ ∆ ′,A

[¬`K+
m

]
Γ ′, ¬A, Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ A[x := a]
[`K+

m
∀]

Γ ′ ⇒ ∆ ′, ∀xA,∆ ′′
Γ ′,A[x := t], ∀xA, Γ ′′ ⇒ ∆ ′

[∀`K+
m

]
Γ ′, ∀xA, Γ ′′ ⇒ ∆ ′

Γ ′ ⇒ ∆ ′,A[x := t], ∃xA,∆ ′′
[`K+

m
∃]

Γ ′ ⇒ ∆ ′, ∃xA,∆ ′′
Γ ′,A[x := a], Γ ′′ ⇒ ∆ ′

[∃`K+
m

]
Γ ′, ∃xA, Γ ′′ ⇒ ∆ ′
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The same variable conditions as for C+ hold, and they are separated into logical or
thinning rules in the same way.

In an introductory rule for a connective or quantifier ◦, introducing A ◦ B or ◦A, we
say that the explicit occurrence of A ◦ B or ◦A in the conclusion is the principal
occurrence of that rule. The explicit occurrences of A and B will be called side
occurrences. The explicit occurrence of A ◦ B or ◦A in the premises will be called
quasi-principal occurrences.

The formula A ◦ B or ◦A will be called principal formula, and the formulae A and B
side formulae. The formulae in the context will be called parametric formulae, and their
occurrences parametric occurrences.

Lemma 3.8. If the end sequent of a C+-deduction D does not contain occurrences of the type
◦+ (of the type ◦−), then D does not contain applications of the rule `C+◦ (of the rule ◦`C+).

Proof This is trivial. If a rule `C+◦ (◦`C+) is applied, then the resulting sequent will
contain ◦ positively (negatively). As no rule replaces any subformula, and as no rule
changes any signum of a connective, this occurrence will remain until the end
sequent is reached.

3.3.2 Pruned Deductions

Proofs may contain steps that are not necessary. The following definitions address
this problem.

Definition A deduction D has the pure variable property, if no variable occurs both
bound and free in D, and for each application of `C+/K+

m
∀ and ∃`C+/K+

m
, using the

namings in the above definitions, a only occurs freely in sequents above the
conclusion of that application. (If x 6∈ FV(A), a should be chosen so, too - that is, in
the worst case, uniquely chosen for this application).

Definition A formula occurrence o of a formula A is called traceable to the axioms if
one of the following conditions holds:

• o is the explicit occurrence of A in the rule Axiom.

• o occurs in the context of the conclusion of a rule, and there is a formula
occurrence of A in the corresponding context of one of the sequent premises of
this rule that is itself traceable to the axioms.

• o is the conclusion of a rule for a connective ◦ ∈ {→, ∨, ∧}, such that A = B ◦C,
and the explicit occurrences of B and C in the premises of this rule are traceable
to the axioms.
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• o is the conclusion of a rule for ¬, such that A = ¬B, and the explicit occurrence
of B in the premise of this rule is traceable to the axioms.

• o is the explicit formula QxA of a rule for a quanifier, and every explicit
occurrence of A (which is possibly changed by a substitution) or every explicit
occurrence of QxA in the premises is traceable to the axioms.

Definition A deduction D in the calculus C+ or in the calculus K+
m is pruned if it has

the pure variable property and satisfies:

1. All occurrences of formulae in any sequent occurring in D as the conclusion of
an application of a logical rule are traceable to the axioms.

2. All side formulae of occurrences of applications of the rules `C+/K+
m

∧,
∨`C+/K+

m
,→`C+/K+

m
, ∀`C+/K+

m
, `C+/K+

m
∃ and ¬`C+/K+

m
are traceable to the

axioms.

Theorem 3.9. Every C+ derivation has a pruned form.

Lemma 3.10. Let D be a pruned C+-deduction without applications of `C+→, `C+¬ and
∨`C+ , then all occurrences of formulae except maybe one are introduced by thinnings into
the succedent of sequents occurring in D.

We will not prove Theorem 3.9 and Lemma 3.10 here. They are proved in (7).

Corollary 3.11. Any pruned C+-deduction not containing applications of `C+→, `C+¬
and ∨`C+ can be transformed into a deduction in the calculus K+

m with the same end sequent.

Proof We have to look at the remaining rules. Axiom and the thinning rules in both
calculi are equal, so are the rules for ∧, ∀, ∃ and so is `C+/K+

m
∨. →`K+

m
and→`C+

differ, as→`K+
m

requires a quasi-principal occurrence of A→B while→`C+ does not.
On the other hand, by Lemma 3.10, in→`C+ , at least one of A or B must have been
introduced by a thinning into the succedent, and this would contradict the
prunedness. In ¬`C+ , if A was introduced by a thinning into the succedent, this
would contradict the prunedness. If A was introduced by an axiom A⇒ A, we can
safely introduce the ¬A in the antecedent by a thinning rule, and then relpace ¬`C+

by ¬`K+
m

, and then push this thinning rule to the bottom as far as possible to regain
a pruned deduction. Doing this, we get a derivation in K+

m.

The sufficiency of {→+, ¬+, ∨−} follows directly from this. For the necessity, see 5.

Notice that the calculi given here are cut free.
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4 Removing stability axioms

Again we focus on the complete Glivenko class {→+, ¬+, ∨−}. In the notation of the
calculus of natural deduction, ¬A is expressed by A→⊥. Furthermore, we usually do
not talk about sequents, but of proofs with free assumptions. So, deriving Γ ` A
means that we have a proof of A in natural deduction with all free assumptions of
this proof being in Γ .

4.1 Concepts on Natural Deduction

The following two theorems are well-known for the calculus of natural deduction,
and proofs are given in (11).

Theorem 4.1 (Normalization). For every proof MA there is a proof NA with the same or
fewer free assumptions, in which no introduced connective is eliminated again. We call such a
proof normal or in normal form, and the process of transforming a proof into its normal form
we call normalization.

Remark In terms of the lambda calculus, this corresponds to the β normal Form.

Theorem 4.2 (Subformula Property). Let t be a proof of Γ`mA in normal form. Then
every formula occurring in t is a subformula of one of the formulae in Γ ∪ {A}.

Theorem 4.3 (Long Normal Form). For every proof MA there is a proof NA with the same
or fewer free assumptions, which is normal, and in which every implication and universal
quantification that is not introduced is eliminated. We say such a proof has long normal form.

This is obvious, as we may expand every problematic u in a normal term to λx.ux
(this is called η expansion).

Notice that another usual definition of the long normal form requires all connectives
that are not introduced to be eliminated. However, one may lose uniqueness of the
normal form with this definition, and in every case we will deal with, we neither
need its properties, nor do we need the uniqueness, so it makes no difference which
definition we use.

The following definitions look complicated at first sight, but in fact, they are the
canonical definitions for their purpose. By the discharge of a formula occurrence we
shall mean the binding of a free assumption in which the formula occurs, through
∨−, ∧− or ∃−, which usually makes this formula occurrence disappear.

Definition A track of a derivation M is a sequence (Ai)0≤i≤n of formula occurrences
such that
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• A0 is a top formula occurrence in M that is not discharged by an instance of
∨−, ∧− or ∃−.
• For i < n, Ai is not the minor premise of an instance of→−, and exactly one of

the following conditions holds:
– Ai is not the major premise of an instance of ∨−, ∧− or ∃−, and Ai+1 is

directly below Ai.
– Ai is the major premise of an instace of ∨−, ∧− or ∃−, and Ai+1 is an

assumption discharged by this instance.
• Exactly one of the following conditions hold for An:

– An is the minor premise of an instance of→−

– An is the conclusion of M
– An is the major premise of an instance of ∧−, ∨− or ∃− and there are no

assumptions discharged by this instance

Definition A segment (of length n) in a derivation M is a sequence (Ai)1≤i≤n of
occurrences of a formula A, such that

• for 1 ≤ i < n, Ai is a minor premise of an application of ∨−, ∧− or ∃− with
conclusion Ai+1.
• An is not a minor premise of ∨−, ∧− or ∃−.
• A1 is not the conclusion of ∨−, ∧− or ∃−.

Notice that by this definition, a formula occurrence which is neither a minor premise
nor the conclusion of an application of ∨−, ∧− or ∃−, also forms a segment of length
1.

The following Lemma will be useful in the further proofs, and is crucial, as we will
show in a counterexample in Section 5.

Lemma 4.4. Let Γ`ecA where A is→-free and Γ contains→ only positively. Then in a proof
of this in long normal form no bound variables occur that contain negative implications.

Proof Assume a bound variable u : B, where B contains negative implications. By
Theorem 4.2, B is subformula of a stability axiom, which means that B = ¬¬C or
B = ¬¬C→C for some atomic C.

In case B = ¬¬C, from Theorem 4.2 clearly follows that it cannot be bound by
anything different from→+ with conclusion C. However, this formula will then be a
subformula of all further derived formulae, as all elimination rules would require a
formula with a negative occurrence of ¬¬C→C, which is forbidden according to
Theorem 4.2.

In case B = ¬¬C→C, every way of binding it would require a formula with B as
subformula, which is forbidden due to Theorem 4.2.
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4.2 Extended Classical Proofs

It is known that we cannot derive all of STAB from ASTAB, but by Lemma 2.4/4, 5, 6
and 7 we know that we can derive stability at least for all formulae not containing ∃
and ∨.

Trivially, extended classical provability follows from traditional-classical provability.
Because of

¬¬A→A ⊥ [u : ¬A]
¬¬A

A

we know that ASTAB`mEFQ and therefore intuitionistic derivability implies
extended classical derivability.

The main difference now lies in formulae containing ∃ and ∨: We can in general not
derive A∨B↔ ¬(¬A∧ ¬B) and ∃xA↔ ¬∀x¬A, as we can do in traditional classical
logic.

We therefore define the weak existence quantifier ∃̃ and the weak disjunction ∨̃ by
∃̃xA := ¬∀x¬A and A∨̃B := ¬(¬A∧ ¬B).

We get the introduction rules A→A∨̃B, B→A∨̃B, ∀x.A→∃̃xA by

A

[¬A∧ ¬B] [¬A]

¬A
⊥
A∨̃B

B

[¬A∧ ¬B] [¬B]

¬B
⊥
A∨̃B

[∀x¬A]

¬A [A]

⊥
∃̃xA

A→∃̃xA
∀x.A→∃̃xA

and the elimination rules A∨̃B→(A→C)→(B→C)→C and ∀x.∃̃xA→(∀x.A→C)→C we
get from
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¬¬C→C
A∨̃B

[u : ¬C] A→C
...

¬A

[u : ¬C] B→C
...

¬B
¬A∧ ¬B

⊥ u
¬¬C

C

¬¬C→C
∃̃xA

∀x.A→C
A→C [¬C]

...
¬A
∀x.¬A

⊥
¬¬C

C

Using these abbrevitations, we may consider extended classical logic as a fragment of
minimal logic.

4.3 Removing Stability Axioms in Extended Classical Proofs

For extended classical logic, we get a similar theorem to the case of the σ-class
{→+, ∨−, ¬−} of Orevkov’s theorem:

Theorem 4.5. Assume Γ `ec A, where the sequent Γ ⇒ A

1. does not contain positive occurrences of→.
2. does not contain negative occurrences of ⊥ and ∨.

Then there is a quadratic algorithm transforming a proof t of Γ `ec A in long normal form
into a minimal one.

Proof As positive implications are forbidden, A must not contain implications at all,
and as all negative implications in Γ are positive in Γ ⇒ A, there must not be a
negative implication in Γ . ⊥ must not occur positively in Γ . Furthermore, negative
strong disjunctions are forbidden in Γ ⇒ A, that is, in Γ there must not be positive
disjunctions.

If a stability axiom ∀~x.¬¬P~x→P~x is used, since we are in long normal form, it must
be eliminated by a sequence of ∀ eliminations, followed by an→− application with
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¬¬P~r, deriving P~r. Assume it was a top most application of stability. As ¬¬P~r
contains a negative implication, by Lemma 4.4 it cannot be an assumption, and must
hence have been derived by→+, which must then have been in the scope of a
derivation of ⊥ from ¬P~r. Thus, every top most stability axiom occurs in a context

StabP,~x

|
¬¬P~r→P~r

|M
⊥ →+u

¬¬P~r
|S

¬¬P~r
P~r
|K
A

where S is a segment. S can only fork if it contains an instance of ∨− as this is the
only rule with two minor premises, but this is clearly impossible since Γ must not
contain positive occurrences of ∨. Thus, the instance→+u is unique.

Now assume M had no occurrence of u. Assume B was a top node of a main track in
M. Then B must contain a strictly positive occurrence of ⊥. On the other hand, B can
never be bound: ∨− or ∃− requires a formula with a strictly positive occurrence of ⊥
which cannot be derived if there are no such occurrences in at least one of the
assumptions, while→+ would contradict normality, as the implication would have to
be eliminated again. Thus, B would have to be in Γ . Contradiction.

So we still have our top most application of stability, and we know that M must
contain a free occurrence of u : ¬P~r, which must then be eliminated with a derivation
N of P~r. We therefore have the form

StabP,~x

|
¬¬P~r→P~r

[u : ¬P~r]
|N
P~r

⊥
|M ′

⊥ →+u
¬¬P~r

|S
¬¬P~r

P~r
|K
A
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where u should not be free in N; such an N trivially exists, we can for example
choose a top most free occurrence of u, then it must be eliminated by such an N.

First notice that no variable that actually occurs in N can be bound by→+ inside M ′
and S: Any application of→+ to bind a variable must be in M ′, since S is a segment.
The introduced→ must disappear again, which can only be achieved by→− with a
major premise that has a negative implication due to normality.

With an additional occurrence of P~r or ¬P~r this is impossible since P~r is not an
implication. With another additional assumption variable with a negative
implication, there would have to be another→− in the proof which either violates
the normality, or leads to the necessity of yet another negative implication, and so on,
and can therefore not be possible.

Thus, this is only possible with a stability axiom, but we chose a top most application
of stability.

Furthermore, there can trivially be no ∨− in M ′ or S since that would require a
positive occurrence of ∨. Thus, all variables are bound by instances of ∧− and ∃−.

Now let E1(m1, s1), . . . ,Ek(mk, sk) be the instances of ∧− and ∃− in M ′ and S below
N in the right order, where E1 should be bottommost. Then
E1(m1,E2(m2, . . . Ek(mk,N)))P~r has at most the same free variables as
StabP,~x~r(S(M(uN))), since every variable that was bound before is still bound.
Furthermore, since we kept the order, E1(m1,E2(m2, . . . Ek(mk,N)))P~r remains
normal. Hence, we can replace StabP,~x~r(S(M(uN)))P~r by
E1(m1,E2(m2, . . . Ek(mk,N)))P~r.

Repeating this will give us a proof in minimal logic.

We now want to create an algorithm doing what is described in this proof. In this
algorithm, we will iterate through the proof tree in depth-first way.

1. If t = u is an assumption or axiom, return u.

2. If t = ∨+a, t = ∃+a or t = (λxa)∀xA recur with a obtaining b, and return ∨+b,
∃+b or λxb.

3. If t = 〈a,b〉, recur with a and b obtaining c and d and return 〈c,d〉.
4. If t = a(b∃xA.d) or t = a(bA, cB.d) recur with a and d obtaining e and f, and

return e(f).

5. If t = a∀xAr recur with a obtaining b and return br.

6. If t = aA→Bb where A 6= ¬¬B, recur with a and b obtaining c and d and return
cd.

7. If t = a¬¬B→Bb¬¬B recur with b obtaining c (to make sure we are at a top-most
stability application). We now know that c is of the form S(λuM(uN)), where S
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is a segment, thus, we can easily skip all ∧− and ∃− instances on c to obtain
λuM(uN) (notice that we have not calculated N yet).
• If u 6∈ FA(M(uN)) we are not on a proper instance, thus, return ac (this

actually cannot happen).
• Otherwise, iterate through M(uN) to find uN: Check for applications of u

with an argument not containing an application of u to get a top-most
such application.

We now know S, M and N. Iterate through S and M and collect all the
elimination axioms, concatenate them obtaining M ′. Then return S(M(N)).

Except for 7, the algorithm just goes through the proof tree and is hence linear. In 7
we have to iterate through the minor premise a few times: Once to skip S, then to
check whether u ∈ FA(M(uN)), then to find the proper uN, and then to collect the
elimination axioms from S and M. All of this can be done in linear time.

Thus, the algorithm is quadratic relative to the length of the proof tree: for every tree
node we have to iterate less than the whole tree a few more times.

The statement of this theorem, though not the algorithm, can be concluded from
Corollary 3.5 and Lemma 3.7:

From Corollary 3.5 immediately follows

Lemma 4.6. Assume Γ `ec A, where the sequent Γ ⇒ A

1. does not contain positive occurrences of→.
2. does not contain negative occurrences of ∨.

Then Γ `i A.

Proof This clearly follows from Corollary 3.5: From Γ `ec A trivially follows Γ`tcA,
as in the latter case we may use more axioms, and from Γ`tcA, the rest follows by
Corollary 3.5.

Still, we only get an intuitionistic proof from Lemma 4.6, that is, a proof that may
contain ex falso quodlibet. On the other hand, Theorem 4.5 also forbids positive
occurrences of ⊥ in Γ , so by Lemma 3.7, this proof will be minimal. We proved
Theorem 4.5 using Corollary 3.5 and Lemma 3.7.

5 Examples and Limitations

We want to show that the case {→+, ¬+, ∨−} of Theorem 3.1 and Theorem 4.5 are
optimal, in the sense that if we drop any of their premises, the theorems do not hold
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anymore. We therefore give counterexamples satisfying all but one of these premises,
for which the theorems do not hold.

Let us go through the premises of the case {→+, ¬+, ∨−} of Theorem 3.1 firstly.

No positive negation: Dropping ¬+, the sequent `tcA∨ ¬A, which proves tertium
non datur, lies in our class. We already gave a classical proof in long normal form in
Section 3.2. It is intuitionistically equivalent to stability, as the following proof shows,
and can therefore not be derivable intuitionistically.

A∨ ¬A [A]
⊥→A [u : ¬¬A] [¬A]

⊥
A

A u
¬¬A→A

No positive implication: Similarly, `tcA∨ (A→B) proves that the→+ cannot be
dropped.

No negative disjunction: As an example that we cannot omit ∨−, in (7) the
counterexample ∀x∀y.R(a, x) ∨ R(b,y)`tc∃y∀xR(y, x), is given, which contains
negative disjunctions. A classical proof is:

u : ¬∃y∀xR(y, x)
[g : ∀xR(y, x)]
∃y∀xR(y, x)

⊥ g
¬∀xR(y, x)

[e : ¬∃x¬R(y, x)]

[f : ¬R(y, x)] [f ′ : R(y, x)]
⊥

f ′
¬R(y, x)
∃x¬R(y, x)

⊥
f

¬¬R(y, x)
stab (**)

R(y, x)
∀xR(y, x)

⊥ e
¬¬∃x¬R(y, x)

stab (***)∃x¬R(y, x)
∀y∃x¬R(y, x)

(*)
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(*)
∀y∃x¬R(y, x)
∃x¬R(b, x)

(*)
∀y∃x¬R(y, x)
∃x¬R(a, x)

∀x∀y.R(a, x) ∨ R(b,y)
R(a, x) ∨ R(b, x)

...
⊥

[R(b, x)] [¬R(b, x)]
⊥

⊥
⊥

⊥ u
¬¬∃y∀xR(y, x)

stab∃y∀xR(y, x)

We have shown that {→+, ∨−, ¬+} is indeed necessary for Orevkov’s theorem.

Now let us go through the premises of Theorem 4.5.

No positive implication: The previous counterexample for the necessity of→+ in
Orevkov’s theorem is not applicable here, as it needs traditional classical logic.
However, the following example can also be used as a counterexample for the
previous case. It is a (partial) proof of the Peirce formula, which is known not to be
intuitionistically derivable. We have in fact (P→Q)→P`ecP, which is provable by

[u : ¬P]

(P→Q)→P

[u : ¬P] [v : P]

⊥ [w : ¬Q]
¬¬Q

stab
Q

v
P→Q

P

⊥ u
¬¬P stab
P

Removing the top most instance of stability can be done as stated above and gives us

[u : ¬P]

(P→Q)→P
⊥→Q [u : ¬P] [v : P]

⊥
Q

v
P→Q

P

⊥ u
¬¬P stab
P

The lower stability however cannot be removed this way: v is bound by an
implication introduction, and we cannot bind it in another way.
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No negative falsum: Theorem 4.5 does not allow negative occurrences of ⊥, and
there is a trivial example showing that this is necessary: ¬P,P`ecQ, which is
provable by

¬P P
⊥ [w : ¬Q]

¬¬Q
stab

Q

We know that since it implies ex falso quodlibet, it cannot be derivable in minimal
logic. Trying to apply the algorithm here fails because w does not occur at all, and
thus no derivation of Q, but there is an abstraction of it. (This is the nasty side case
in Section 4.3 where we proved that M ′ actually has to contain u freely.)

No negative disjunction: Theorem 4.5 does not allow negative disjunctions.
Assuming we drop this premise, then let Q be atomic and not contain x freely, and
consider (∀xPx)→Q, ∀x(Px∨Q) `ec Q, an example given in (10). It is provable by

[u : ¬Q]

(∀xPx)→Q
∀x.Px∨Q

Px∨Q [w ′ : Px]

[u : ¬Q] [w : Q]

⊥ [¬Px]
¬¬Px stab
Px

w ′,w
Px
∀xPx

Q

⊥ u
¬¬Q

stab
Q

but it is known not to be provable in minimal logic. Trying to apply the algorithm
firstly removes the upper application of stability, and replaces it by w : Q. But then
we are in the situation of

Px∨Q [w ′ : Px] [w : Q]

Px

which is not a correct proof anymore.
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We have shown that all premises of Theorem 4.5 are indeed necessary. Now, one
could think about whether the given algorithm also works for traditional classical
logic. To show that it does not in general, we give an additional example:

Extended classical logic is necessary: The sequent ∀xR(a, x)`tc∃y∀xR(y, x), which is
similar to our ∨−-example for Theorem 3.1, shows that the algorithm in Section 4.3
fails if the given proof is in traditional classical logic rather than extended classical
logic. It is trivial to prove this sequent, even in minimal logic. However, the
following proof uses general stability.

[u : ¬∃y∀xR(y, x)]

[g : ∀xR(a, x)]
R(a, x)
∀xR(a, x)
∃y∀xR(y, x)

⊥ g
¬∀xR(a, x)

[e : ¬∃x¬R(a, x)]

[f : ¬R(a, x)] [R(a, x)]
⊥

¬R(a, x)
∃x¬R(a, x)

⊥
f

¬¬R(a, x)
stab(**)

R(a, x)
∀xR(a, x)

⊥ e
¬¬∃x¬R(a, x)

stab(***)∃x¬R(a, x)

∀yR(a,y)
R(a, x) [h : ¬R(a, x)]

⊥
h⊥ u

¬¬∃y∀xR(y, x)
stab∃y∀xR(y, x)

The algorithm from Section 4.3 will fail here when eliminating the stability marked
with (**), because Lemma 4.4 does not hold in this case: The assumption e contains a
negative implication, but it disappears in the scope of the stability application
marked with (***). Therefore, it is necessary for this algorithm that only atomic
stability is used.

6 Possible Applications

In (1) an example, a weakening of a theorem by Heitmann, is given. Some effort is
taken to bring this theorem into a form that looks a little more like formulae to
which Barr’s theorem can be applied. However, with Orevkov’s theorem, except for
“cosmetical” reasons, there is no need to do that.
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The common notion of a ring is well known, and we only give a more model
theoretic definition of it, as it fits better into our setting. (Actually, we define a
commutative ring with unity.)

Definition A ring is a model R with equality =⊂ R× R, two operations + : R× R→R,
· : R× R→R and two distinguished elements 0, 1 ∈ R, of the following theory:

• ∀x∀y.x+ y = y+ x, ∀x∀y.x · y = y · x.

• ∀x.x+ 0 = x, ∀x.x · 1 = x.

• ∀x∀y∀z.x+ (y+ z) = (x+ y) + z, ∀x∀y∀z.x · (y · z) = (x · y) · z.
• ∀x∀y∀z.x · (y+ z) = (x · y) + (x · z).

We fix the convention that · binds stronger than +, and that we may write xy instead
of x · y.

Notice that all the axioms may be contained in the antecedent of a sequent belonging
to the complete Glivenko class {→+, ¬+, ∨−}.

A common problem when applying formal methods to algebra is the fact that,
maybe due to the reason that algebra was mainly developed before the rise of
symbolic logic, it makes excessive use of higher-order objects, such as ideals, and in
addition to that, often in a most-possible unconstructive way. Therefore, to make it
accessible for constructive mathematics, a lot of effort was put into avoiding these
higher order objects.

In our case, we will not define ring ideals as a subsets of a ring, but as unary
relations on rings, which satisfy certain conditions, and instead of defining quotients
of rings and ideals as sets of equivalence classes, we define them by the same model
as the original ring except for another interpretation of the equality relation, which
can be expressed in the original ring.

Definition An ideal of a ring R is an unary relation A ⊆ R such that

• ∀b∀r.Ar→A(br).

• ∀b.∀c.Ab→Ac→A(b+ c).

For a given ideal A, the quotient R/A, defined by changing the interpretation of b = c
to the relation = /A we get from the interpretation of ∃a.Aa∧ b = c+ a, models the
ring axioms.

Classically, the Jacobson radical can be defined as the intersection of all maximal
ideals, where a maximal ideal is an ideal which is not a proper subset of a non trivial
ideal. However, this is not useful here, as it involves higher order objects.
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Definition Let R be a ring. Then we define that an element b ∈ R is invertible, writing
b ∈ R∗, and that an element a ∈ R is in the Jacobson radical JR, writing a ∈ J, and that
an element z is in the boundary of a, writing z ∈ Ja, by

• b ∈ R∗ :⇔ ∃x.bx = 1.
• a ∈ JR :⇔ ∀x.(1− ax) ∈ R∗.
• z ∈ Ja :⇔ ∃x∃y.z = xa+ y∧ ax ∈ JR.

Notice that all these relations may belong to the antecedent of a sequent belonging to
the complete Glivenko class {→+, ¬+, ∨−}.

Definition We inductively define the relation Heit(R) < n, saying the Heitmann
dimension of R is smaller than n, by:

• Heit(R) < 0 :⇔ 1 = 0.
• Heit(R) < n+ 1 :⇔ ∀a.Heit(R/Ja) < n.

The problem with this definition is that it is not intrinsic. For n = 0, we have
Heit(R) < 1 :⇔ ∀a.Heit(R/Ja) < 0, which means ∀a.(Heit(R/Ja) |= 1 = 0) and thus,
∀a.∃z.z ∈ Ja ∧ 1 = z, which is equivalent to ∀a.1 ∈ Ja. Unwinding this definition, we
get ∀a.∃x∃y.1 = xa+ y∧ ax ∈ JR, which becomes
∀a.∃x∃y.1 = xa+ y∧ ∀z.(1− zax) ∈ R∗, which then becomes
∀a.∃x∃y.1 = xa+ y∧ ∀z.∃b.b(1− zax) = 1.

For n = 1 we have Heit(R) < 2 :⇔ ∀a.Heit(R/Ja) < 1 which we can express via
∀a ′.((R/Ja ′) |= ∀a.∃x∃y.1 = xa+ y∧ ∀z.∃b.b(1− zax) = 1) which can be unwound
into ∀a ′.∀a.∃x∃y.(∃t ∈ Ja ′ .1 = t+ xa+ y) ∧ ∀z.∃b.(∃t ∈ Ja ′ .b(1− zax) = t+ 1), which
then can be unwound again into something that is obviously→ and ∨ free.

In general, one sees that proceeding to arbitrary n cannot produce a formula that
contains→ or ∨, hence, sequents containing these formulae in their antecedent
cannot be outside of {→+, ¬+, ∨−} because of these formulae.

Definition An n× n-matrix over a ring R can be defined as a function
{0, . . . ,n− 1}→{0, . . . ,n− 1}→R. The set of all such matrices shall be denoted by
Rn×n. For every n× n-matrix a, we can define the x,y-submatrix function by
ã := λxλyλpλq.a(if(p < x)(p)(1+ p))(if(q < y)(q)(1+ q)), and therefore the set of
n− 1-submatrices by {a}n−1 := {ãxy|0 ≤ x,y ≤ n}, and the set of m-submatrices
inductively as the set of submatrices of the (m+ 1)-submatrices. The determinant [a]
of a matrix a can be defined as usual, for example recursively through the Laplace
expansion [i] = i for i ∈ R = R1×1, [a] =

∑
0≤i,j<n

(aij) · (−1)i+j · [ãij] for

(n× n)-matrices, n > 1.

For a given matrix F ∈ Rk×k and a given natural n < k, let
{a1, . . . ,am} = {[x]|x ∈ {F}n}, and define the ideal ∆n(F) by
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• ∆n(F)r :⇔ ∃b1
. . . ∃bm.r =

∑
1≤i≤m biai.

Obviously, ∆n(F)r is expressible in first order without ∨ and→.

Theorem 6.1. Heit(R) < n∧ ∀r∆n(F)r→∃X,Y .1 = XFY, where X is a row vector, Y is a
column vector, and XFY is defined in the usual way.

This theorem can be classically proved. On the other hand, Heit(R) < n∧ ∀r∆n(F)r is
expressible without→ and ∧, and the same holds for ∃X,Y .1 = XFY, obviously, since
this can be expressed as the existence of elements of R satisfying the conjunction of
some equations. Denote by R the ring axioms, then
R, Heit(R) < n, ∀r.∆n(F)r⇒ ∃X,Y .1 = XFY is therefore in the complete Glivenko class
{→+, ¬+, ∨−}, and we can apply Orevkov’s theorem.
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